建設ITガイド

トップ >> 特集記事 特集記事

書籍版「建設ITガイド」に掲載した特集記事のバックナンバーです。

設備BIMはグリーンに貢献している

2024年8月13日

欧州グリーンディール

グリーンに貢献するということに関してBIMデータの役割と、デジタル技術を活用する行動自体がグリーンに貢献するのではないかと思い、設備に関する話題を紹介します。
 
半年に一回ぐらい、定期的にbuilding SmartJapanのサミットに参加させていただく機会あります。
今年の春ローマで行われたサミットで、クロージングのところで、パトリックスさんが、「グリーンに貢献するんだよ、私たちの活動は」というお話をされていたことが非常に印象に残っています(図-1)。

図-1 BSIサミットクロージングセッションの様子
図-1 BSIサミットクロージングセッションの様子

 
設備環境小委員会の発足時は、設備FM分科会という名前でした。
環境小委員会という名前に変更した時に、強い意志を持って、私たちは環境をテーマに、環境負荷低減に貢献できるエンジニアリングを実現するためにIFCを運用していこうと、当時のメンバーと共有した記憶があります。
10月のオスロサミットではヨーロッパグリーンディールという言葉を聞きました(図-2)。

図-2 ヨーロッパグリーンディール (WEBにて詳細説明)
図-2 ヨーロッパグリーンディール (WEBにて詳細説明)

 
ディール、投資、環境負荷を低減するために、政策として建設業ばかりではなく、運送業マニファクチャー教育など、多くの産業全体にデジタルデータを効率よく回して、データ書式を整えて、計算書式を整えて運用のルールを決めて、仕事で最適な選択肢を導き出すことでデジタルデータを使うことが環境に貢献する。
設備に限らず産業全体でグリーンに貢献する。
現行の業務を改善する選択肢を持っていこうと、ディスカッションしていたことは大きく印象に残っています。
推進、加速化というプロセスを経て義務を伴う規制につながっているということを、ヨーロッパのグリーンディール政策で実施されていることが確認できました(図-3)。

図-3 エコデザイン規則 条文
図-3 エコデザイン規則 条文

 
 

IFCをつなぐデータにする

建設業というのは、具体的な成果を構築するには、設置場所に資材を運んで、建設資材を組み立て、建築物をつくるという業務で成り立っています。
つくるための「完成する形状や機能」をデジタル化したBIMモデル、設計の意図伝達の段階においても詳細度が異なるモデルも含めて、完成予想BIMモデルがスタートにあって、そのBIMモデルにデータが約束されたルールどおり仕込まれてあれば、そのデータを製造組み立て部分に渡せる、運送の皆さんにも渡せる。
もちろん、私たち建設業にも渡せるので、完成後はオペレーティングの部分にフェーズが移ります。
実際に建物を使う部分にも渡せます(図-4)。

図-4 建設デジタルデータの活用場面
図-4 建設デジタルデータの活用場面

 
最後には解体廃棄という、建設のライフサイクルは終焉を迎えます。
いろいろな場面で選択肢を導き出すための算出やシミュレーションができるデータになっている、デジタルデータの鍵になるものがIFCから派生したもの、データを関連付けたものとなっています。
 
今回のヨーロッパで聞いたインパクトの中で、基本データとしてのIFCは、他の産業との結び付きや、他の産業へのマッピングという可能性を非常に大きく持つものということが印象付けられました。
なおかつ、データが寸断されて渡らなかったことによって、今まで大きな損失をしていた、寸断されたデータをつなげる可能性がある、IFCの利用があるということを確認しました(図-5)。

図-5 ノルウェーオスロにおける水道インフラで使われるデータ基準
図-5 ノルウェーオスロにおける水道インフラで使われるデータ基準

 
 

環境、グリーンに寄与する活動

IFCは、Industry Foundation Classインダストリー=産業、建設業ばかりではなく運送業、製造業などと多くのデータをつなげるだけではなく、何に成果を見いだすか?その成果の一つがLCAの評価、これはIFCが流れるからこそ効率的にできると言えます(図-6)。

図-6 LCA評価を算出するフロー (国際標準クラスを採用)
図-6 LCA評価を算出するフロー (国際標準クラスを採用)

 
Life Cycle Assessmentは、低炭素社会を実現するための取り組みと言われています。
CO2をいかに抑制するか、材料を製造する時にどれぐらいCO2を出すのか、運ぶ時にどれぐらいCO2を出すのか、建設のプロセスにどんな重機・工具を使うか、どれぐらいの電気量を使うのか。
設備が大切なことは実際に運転する際の状態です。
どう運転するか、制御や運転の工夫でCO2を放出する量を削減できるのか、最後に廃棄、つまり材料が処分された時にどれぐらいCO2を排出するのかということを算出するに当たって使われるのは建設資材単位のデータです(図-7)。

図-7 CO2排出量を算出するために必要な原単位
図-7 CO2排出量を算出するために必要な原単位

 
材料の分類がしっかりとできて、それに対する原単位の扱いが大切です。
日本においてはイディア(IDEA)という原単位がよく使われていますが、数量へ原単位をかけることによって、どれぐらいのCO2が出るか、工場から運ぶ運送過程でどのような運送手段を使ったのか、どこの工場で作ったものでどんなトラックで運ぶか、をトラックの台数を少なくできる運び方としてロジスティックのデータと組み合わせることがあります。
 
春にサミットでヨーロッパに行ったら、切符を買おうとしてWebサイトにアクセスしたところ、この電車だとCO2がどれぐらい、飛行機だとどれくらい、バスだとどれぐらい、などと丁寧に表示されます。
なるべく低炭素に貢献できる選択をしなさいということです。
 
設備計画でも削減活動は同じです。
この設備の仕組みを作ると、例えば塩ビ配管でやりました、ステンレス配管でやりました、このポンプを採用しました。
省エネの機器を選びました。
それによってCO2排出量が大きく変わってきます(図-8)。

図-8 塩ビライニング鋼管の材料構成をBIMデータで分析
図-8 塩ビライニング鋼管の材料構成をBIMデータで分析

 
当然、労務も変わってきます。
私たちが判断に使いたい結果がBIMデータとuniclassや、さまざまなIDEA、いろいろなデータをマッピングすることで算出できるようになります。
BIMの最大の効果は「見える化」です。
設備環境性能の見える化にBIMデータが使われていますが、LCA評価は、一般的にはコンクリートと鉄骨しか出していません。
細かいところまで手間暇をかけて評価することに対して、時間が割けないことが現実です(図-9)。

図-9 分類を計算につなげるためにデータマッピング
図-9 分類を計算につなげるためにデータマッピング

 
BIMデータを組み合わせて運用する仕組みにおいて、設計や施工計画の段階で作られるBIMモデルが存在し、LCAの評価を半自動的に出すことができれば、グリーンに貢献できるBIMの成果ということにつながるのではないでしょうか。
 
 

設備IFCにできること

BIMオブジェクトデータを設備の機器・機材から出す、つまり運転も含めたものをLCAとして出せるような仕組みが、設備のIFCを使えばできると思います。
 
構成材料をスプレッドシートで仕分けして、どのデータベースに絡めたらいいのかなど、LCAの計算するときに工夫をしています。
このデータを計算に移行するために、他のデータとどうマッピングしたのかを示したものが下記の図です。
この部屋にある材料をどれぐらい、系統ごとに算出できるかというニーズに対して、BIMデータであれば答えを出すことができます。
一つの部屋にある製品について、この機械一つにどれぐらいCO2が発生するのかという判定したい単位ごとのLCAの評価を出すことも、BIMワークフローで発生するデータをつなげて実現できます(図-10、11)。

図-10 特定の部屋に設置された建設資材のLCA
図-10 特定の部屋に設置された建設資材のLCA
図-11 特定の材料ごとに仕分けされたLCA
図-11 特定の材料ごとに仕分けされたLCA

 
私たち設備環境小委員会メンバーは集計のツールにbuildingSMARTの設備IFCデータ利用標準に包含したIFCデータを、クラウド上のデータベースにインポートすることで、積算の見積書がViewerとともに出てくる仕組みを作ろうと活動しています。
要件を定義したり、そこの要件が回るためのルールセットというものを定めたりしています。
分類の書式に、いかにマッピングできているのかというところは、ワークフローを備えて要件定義をしたRFPを作っているところです。
 
積算をWeb環境で実施するために作っているのはRFPですが、ツール開発のための要件定義書を作っています。
要件定義書を作るためには、今のデータはどんな構造になっているのか理解していないとなりません。
ツールが出来上がった暁にはただ積算ができるばかりではなく、積算とはモノを特定して、どれぐらい数がどこの空間にあるのかによって、他の箇所の積算ができれば他の技術計算が行えます。
静圧計算、圧力損失計算、エアバランス。
さらにライサイクルアセスメントに代表される環境評価、どれぐらいのマテリアルがどこまでの材料に使われてどう運ばれてきたか?どう運転されたかといったことも、積算の基本情報があれば算出することができます(図-12)。

図-12 積算で使われる分類を技術計算にも活用
図-12 積算で使われる分類を技術計算にも活用

 
 

機器メーカーとの連携

設備構成において、機器は非常に大きなインパクトがあります。
その機器データ(BIMデータ)が回っていくのかが大切であると、ヨーロッパのグリーンディールにおいても大きなテーマとして取り上げられていました。
 
例えば、見積りの状況、積算の時の状態、実際に施工する時の状態、あと完成引き渡しの状態のデータは非常に重要で、機器の形状が変わるということではなく、データの中身がどんどん成長していくのです。
 
BIMライブラリ技術研究組合の部会2で、BIMオブジェクト利用標準2.0という電気・空調・衛生を包含した機器の利用標準を策定してリリースしています。
そのリリースしたものは、国内にある多くの空調機メーカー、送風機メーカー、ポンプメーカー、照明メーカーなどが保持しているデータです。
それらを流通する活動を同組合でやっているのですが、それらのデータをIFCにインポートすることをイメージしています(図-13)。

図-13 製造メーカーのカタログ情報 (製造情報を活用)
図-13 製造メーカーのカタログ情報 (製造情報を活用)

 
製造業が持っているデータをExcel形式で提供していただき、値をわれわれの検証にダイレクトに使うことができれば大きな社会貢献となります。
適切な機器の選定計算がBIMデータと製造者からもたらされる値によって計算が完結するからです。
生産現場で監理者が機器の能力仕様の確認を行うのに多くの時間を費やしており、デジタル確認が施工現場で実現でき、効率化と同時にグリーンに貢献できているシステム選択を確認できることがグリーン貢献であるのではないでしょうか。
 
 

グリーンなデザイン

スマートなビジネスを産業として実施してもらいたいとの思いで、日本においては建築BIM推進会議加速化事業が行われています。
標準データを整備して、標準ソリューションを使う、標準を運用できる人材を評価して産業をグリーンに貢献する形に回していくことが目的です。
 
BIMツールを扱う環境を増やしていくことも大切ですが、グリーンに貢献できる人材を育成して産業で活躍してもらうことが本来の目標です。
道具を売って、補助金が切れた途端に誰も使わないような道具を展開することが目標ではないはずです。
シンガポールで8年前に多くの補助金でBIMツールを使える状態にしましたが、現在シンガポールではIFCSGに代表される標準フォーマットを運用することで行政に係る申請確認などを実施することに集約しています(図-14)。

図-14 シンガポール政府 (IFCSGを採用)
図-14 シンガポール政府 (IFCSGを採用)

 
補助をして標準を推進している先には、官民合意で作り上げた標準を用いることが法的な義務を伴って実装されることが見えてきます。
 
ヨーロッパのグリーンディールDPPデジタルプロダクトパスポートに見られる、標準データで認証された確認検証計算ツールでグリーンのための計算を経たものしか、建設資材、製品を市場に投入できないということです。
 
建設ICTは、生産性を高めるという価値は十分果たしていると思われます。
一方で、設計・施工計画の立案過程で作られるBIMデータを使い、グリーンに貢献できる環境を作り上げることが大切な局面における判断のよりどころになるのではないでしょうか(図-15)。

図-15 BIER 建設情報環境責任という活動が活発になっている
図-15 BIER 建設情報環境責任という活動が活発になっている

 
 
 

一般社団法人buildingSMART Japan設備環境小委員会
谷内 秀敬

 
 
【出典】


建設ITガイド 2024
特集2 建築BIM
建設ITガイド2024


 



BIM/CIM・Plateau 連携デジタルツインによる資産価値創造

2024年8月5日

なぜBIM/CIMの普及が進展しないのか

建築物・構造物(以下、建築物など)の施工後の所有者は、施主と、分譲所有者の集合体という2つの形態が存在する。
現状では、この両者が施工後にBIM/CIMが提供する建築物のデジタルツインの利活用の方法とその価値を認識することができていない。
また、国外においては施工の工程表・計画の作成と管理にBIM/CIMが利用されることは常識となりつつあり、施工工程のデジタル化による効率化と迅速化が実現されている。
さらに、施工後の建築物などの運用開始後から解体までの「ライフタイムでの管理」が実現されつつある。
ライフタイムでの管理には、建築物などの運用管理だけではなく価値管理が含まれている。
建築物などは、施工後も改修や機器などの増設や入れ替えが行われるし、建築物ではテナントも変化することが一般的である。
すなわち、施工後も建築物などの構造・構成が変化することで要求・要望される新しい機能への対応が必要となる。
この新しい要求・要望への対応は、建築物などの経済的価値(資産価値)に反映されることになる。
日本においては、建築物などの経済的価値は、施工時がピーク(最大)であり、その後は、単純に減少すると考えるのが一般的であるようである。
適切な「ライフタイムでの管理」が行われれば、施工後よりも高い経済的価値を建築物などが持つことも可能であるし、経済的価値の減少度合を小さくすることも可能となる。
このような、BIM/CIMを用いた建築物などのデジタルツインが、ライフタイムでの経済的価値の最大化に貢献することと、その具体例(=ユースケース)を、施主と、分譲所有者の集合体が理解できていないことが、日本においてBIM/CIMが利活用されない最大の理由であると考えられる。
 
もう一つの理由としては、特に中小規模の建設関係事業者におけるデジタル化への移行に伴うコスト負担と労力、さらに人材確保・教育面でのコスト負担と業務変革の実現性への懸念である。
「鶏と卵問題」でもあるが、上述したBIM/CIM利活用の効果が認識されず、建築物などの設計・施工のみでの利用であれば、やはり、コスト・投資の回収を見込むことが難しいのは当然であろう。
また、BIM/CIMの適用が一部の案件にとどまっているという現状も原因として考えられる。
 
 

BIM/CIM利活用の効果

BIM/CIMの利活用に関して、「つくる段階」での短期的かつスポット的な効果としての、建築物などの「見える化」により、関係者間での合意形成が容易となり、設計の効率化が図られることは認識されている。
しかし加えて、以下で述べる「つかう段階」での長期的・継続的かつ広範囲への効果も広く認識されなければならない。
具体的には、以下の2つがその代表的なユースケースである。
 

(1)建築物などの効率的・効果的な{自動・自律的}運営・運用・維持管理

長期にわたる総合的な運用コスト削減が、デジタル技術とデジタル機器の付加的な導入によって実現される。
特に、少子高齢化が進展する日本および多くの先進国においては、ロボットやIoT機器の導入や人手による作業のデジタル化・人工知能を利用した高度な自動化によって、建築物などのデジタル技術を活用した自律的な機能の導入とそのアップデートが前提の建築物などの管理運用が可能となる。
「ファシリティ・マネジメント(FM:Facility Management)」のDX(デジタル・トランスフォーメーション)である(図-1)。

図-1 BIM CIMを活用したLCA(Life Cycle Assessment)
図-1 BIM CIMを活用したLCA(Life Cycle Assessment)

 

(2)資産価値の向上

「アセット・マネジメント(AM:AssetManagement)」、すなわちDCF(Discounted Cash Flow)に関する「資産価値創造のエコシステムの形成・創成」の実現である。
BIM/CIMを活用したDXをAMに関して実現させなければならない。
建築物などにとってFMは建築物などの経営・財務的において基本的には「コスト」とみなされる。
従って、FMはコスト(=キャッシュアウト)の削減である。
一方、AMはキャッシュインの増加を目指す施策である。
建築物などが産み出す価値を増加させる(あるいは減少させない)、すなわち建築物などの利用価値を向上させ、家賃や便益を増加させる(あるいは減少させない)施策・投資である。
建築物のテナントに対して、より快適な居住・就業環境を提供することが必要である。
そのためには、静的な躯体環境だけではなく、施工後に導入される各種の機器を利用して提供されるサービスが重要な要素となる。
スマートビルである。
スマートビルは、機能の追加やアップデートが可能な環境を持った建築物であり、ライフタイムでの建築物の持続的で継続的な進化を提供する。
スマートビルの実現には、ビルのデジタルツイン化が必須であり、そのためには、BIM基盤の活用が前提となる(図-2)。

図-2 デジタルツイン活用による資産価値創造
図-2 デジタルツイン活用による資産価値創造

 
 

今後の展開

国連気候変動枠組条約締約国会議(通称COP)において1997年に合意された「京都議定書」は、2015年の「パリ協定」でその具体化が進められ地球温暖化に対する関心が高まり、同年9月に開催された国連総会でのSDGs(Sustainable Development Goals:持続可能な開発目標)の17の国際目標(169の達成基準と232の指標)へと進展することになった。
SDGsへの関心は、コロナ禍を契機として、また、自然災害の甚大化が顕著となり、急速に高まりを見せている。
 
われわれは、BIM/CIMに象徴されるデジタル技術を用いたSDGsに資する建築物などに関するDXを実現することで、地球環境の維持・改善に資する建築物など、さらには、キャンパス、街を創成しなければならない。
SDGsを実現・継続するという資産価値である。
 
建築物に関する全ての資源に関するエネルギー消費量の削減(=エネルギーの生産性効率(EP:Energy Productivity)の向上)の手法を考えてみよう。
すなわち、近年注目されているProduct Carbon Footprintの削減である。
この実現には、EP100では2つの柱がある。
EMS(エネルギーマネジメントシステム)の導入エネルギー生産性目標のため、10年以内にEMS導入を目指すとともに、企業が所有しているビルの「ZEB(ゼブ:Net Zero Energy Building)化」を目指すべきであると考える。
これらの実現のためにBIM/CIMに代表・象徴される対象とするシステムのデジタルツインの作成が前提となる。
 

(1)「新規に必要とするモノ」を「過去に製造したモノ」で代替する

リサイクルあるいはサーキュラーエコノミーと呼ばれる資源や部品の再利用・再生利用である。
産業革命以降、特に日本においては、Scrap&Buildを基本としてきた。
しかし、基本原料を製造するため(+資源から基本原料を製造するため)に必要となるエネルギーを、既に、製造済みの基本原料を再利用することができれば、大きなエネルギーおよび物理資源の削減が可能となる。
このような、「モノ」を再利用(リサイクル)する構造は、少子高齢化と人口増加の停滞・停止による“物理”経済の成長が鈍化・停滞あるいはマイナス成長となっている国や都市・地域に有効な構造であり、このような現象は、特に多くの先進国で加速することになるとともに、新興国や発展途上国においても地球温暖化を減少させるために有効な方策となると考えられる。
建築の領域においては、1960年代にMITのProf.Nicolaas John Habrakenが提唱した「Skelton&Infill」がこれに当たると言えよう。
Skelton(躯体)とInfill(内装)を分離して考えることで、耐久性のある構造体を保持しつつ、室内を作り替えて何世代に渡っても建物を使用することができるアーキテクチャである。
躯体を解体して、再構築する必要がないので、廃棄物(含産業廃棄物)の削減、再構築に必要な資源とエネルギーの削減を実現することになり、地球温暖化ガスの減少に大きな貢献を行うことになる。
 

(2)「新規に必要とするモノ」をデジタル&シェアリングエコノミーによって削減する

広義のデジタル化の導入によって、人類は排他的な物理資源の専用利用ではなく、物理資源の共有を行わなかった複数のサービス提供者間で物理資源を共用利用するシェアリングエコノミーを編み出した。
これにより、必要な資源(Resource)量の削減だけではなく、資源を作成するために必要となるエネルギー量も削減することになる。
Resource ProductivityとEnergy Productivityの飛躍的な向上である。
 
さらに、「物理的モノの移動」エネルギー(含電力)の移動≫デジタルビット(デジタル化されたモノとコト)の移動」を意識したデジタル化を実現するべきである。
物理的なモノを可能な限り利用しないようにデジタルビットを用いて、既存と等価あるいは新しいサービスを実現するシステム構造・アーキテクチャを実現することで、大きなProduct Carbon Footprintの削減が可能となる。
 
 

むすび

スマートなビル・キャンパス、そしてシティーの実現には、対象物の正確なデジタルツインが必須であり前提となる。
このデジタルツインを用いた建築物などや街のDXは、①キャッシュアウト削減だけではなくキャッシュインの増加、②Product Carbon Footprintの削減を含むSDGsおよびGXの実現、を可能にする。
なお、情報処理推進機構デジタルアーキテクチャ・デザインセンター(DADC)のスマートビルプロジェクトでは、本稿で述べた、デジタルツインの活用と社会実装、さらに産業競争力、国際競争力の強化を目指した活動を行っており、2025年度にはコンソーシアムの組成を目指している。
 
 
 

東京大学/デジタル庁
江崎 浩
株式会社竹中工務店/IPA DADC
粕谷 貴司
株式会社日建設計/IPA DADC
中村 公洋
株式会社三菱総合研究所
長谷川 専
株式会社三菱地所設計
石橋 紀幸
株式会社シムックスイニシアティブ
中島 高英

 
 
【出典】


建設ITガイド 2024
特集2 建築BIM
建設ITガイド2024


 



海外におけるBIM動向 BIM情報マネジメント国際標準ISO19650におけるopenBIMの役割とは

2024年7月29日

はじめに

一般社団法人buildingSMART Japan(以下、bSJ)は、建設業界におけるデータ流通・相互運用の促進を目的として、国際組織buildingSMART International(bSI)の日本支部として1996年に設立され、BIMデータの国際標準規格であるIFC(Industry Foundation Classes)や、BIM推進に関連する標準化活動を、国際標準化機構(ISO)、欧州標準化委員会(CEN)などと協調しながら推進してきている。
2023年には、初の南米大陸からブラジル支部、BIMのビジネスアウトソーシング企業が多く、人口増加と経済成長が注目されているインド支部が、新たにbSIに加盟している。

図-1 buildingSMART支部の状況(2023)
図-1 buildingSMART支部の状況(2023)

 
2023年9月には、世界各地のBIM関係者がノルウェー・リレストロムに集い、建設産業におけるデジタル化についての標準化や実用化に向けての情報共有、議論を行うbSIサミット会議が開催された(図-2)。

図-2 buildingSMARTサミット会議の全体会議場
図-2 buildingSMARTサミット会議の全体会議場

 
bSIサミット会議では、ISO19650に基づいたBIMワークフローの事例研究、建築確認、サステナビリティ、デジタルツイン、デジタルサプライチェーン分野など、さまざまなテーマについての基調講演、パネルディスカッション、分科会、アワード表彰などが行われ、最新情報の共有、相互理解、気づきの場として発展してきている。
 
本報告では、bSIサミットの最新情報を基に、世界各地域におけるISO19650に基づいたBIMプロジェクト推進の状況、共通データ環境(CDE:Common Data Environment)におけるopenBIMの役割、建築確認へのIFC活用の最新状況について紹介する。
 
 

bSI Awards 2023

bSIでは、IFC、BCF(BIM Collaboration Format)、IDS(Information Delivery Specification)などbuildingSMARTが策定している標準を活用したopenBIMの普及促進を目的に、2014年からbuildingSMART Awardを年一回実施している。
春に応募を開始して、秋のサミット国際会議において設計、施工、運用・維持運営、学生、研究などの部門ごとの表彰を行っている。
2023年度も、全世界から137の応募があり、サミットではファイナリスト22チームが発表を行い、最終的に9の分野別優秀賞が発表された(図-3)。

図-3 bSI Awards 2023各カテゴリー優秀賞(bSIホームページから)
図-3 bSI Awards 2023各カテゴリー優秀賞(bSIホームページから)

 

各部門優秀賞9チーム
  • 資産管理部門:HOCHTIEF ViConおよびHOCHTIEF PPP Solution(ドイツ):「高速道路維持運営のためのデジタルツイン」
  • 建築施工部門:Tecklenburg GmbH(ドイツ):「警察署建築プロジェクトにおける持続可能な計画と施工」
  • 土木インフラ建設部門:中国鉄道科学アカデミー有限公司(中国):「杭州西駅におけるopenBIM活用」
  • 建築設計部門:Finavia Corporation(フィンランド):「ヘルシンキ空港開発プロジェクト2013~2023」
  • 土木・インフラ設計部門:ILFチューリッヒ(スイス):「鉄道トンネルへのopenBIM CDE活用」
  • ハンドオーバー部門:中国鉄道第一測量設計研究所集団有限公司および中国鉄道科学アカデミー有限公司(中国):「鉄道のマルチドメインopenBIMデジタルエンジニアリング認証およびハンドオーバー(引き渡し)」
  • プロフェッショナル研究部門:清華大学(中国):「openBIMに基づく自然言語処理技術による自動設計チェック」
  • 学生研究部門:ミュンヘン工科大学(ドイツ):「IFCとAI自然言語処理学習モデルを活用した初期設計段階での自動LCA設計意思決定支援システム」
  • テクノロジー部門:清華大学(中国):「openBIMおよび中国国家基準に基づいたカスタマイズ可能なBIM自動チェック」

 

ISO19650に基づくBIMプロジェクト推進

bSI Awardsにおける各チームのプロジェクト推進は、ISO19650に準拠して行うことが基本となる。
ISO19650は、BIMを活用した建設ライフサイクルにおける情報管理について規定している国際標準で、openBIMと密接な関連性を持っている。
ISO19650では、プロジェクト体制における発注者、受注者、タスクチームの構成の定義、役割を明確にし、次に示される情報要件の定義と運用が求められ、bSI Awardsの資料を理解するにも、これらの用語についての理解が必須となる。
 

  • OIR(Organisational Information Requirements):組織情報要:資産管理のニーズを満たし、組織内の高度な戦略的目標を達成するために必要な情報の要件。
  • PIR(Project Information Requirements):プロジェクト情報要件:発注者の意思決定に必要なプロジェクト情報への要件定義。
  • AIR(Asset Information Requirements):資産情報要件:プロジェクトの引き渡し時に、プロジェクトチームが運用とFMのために提出する情報の要件。
  • EIR(Exchange Information Requirements):交換情報要件(発注者情報要件):発注者がBIMプロジェクトに関する要件をまとめた文書。
    OIR、PIR、AIRの内容を直接、間接的に引き継ぐ。
  • BEP(BIM Execution Plan):BIM実行計画:EIRの内容に基づいてBIMプロセスを定義するためにプロジェクトチームが作成する文書。
    プロジェクト期間中の情報PIM(Project Information Model) が作成され、資産管理プロセスの情報AIM(Asset Information Model)へ引き継がれる。

 
BIMプロジェクトにおいて、特にEIRとBEPは密接に関連しており、これら情報要件の明確な定義は、発注者と受注者のBIM活用のゴール設定、竣工後のデータ活用などの成否に関わるため、bSI Awardsの評価ポイントの一つである。
今回のbSI Awardsにおいても、これらISO19650に準拠した文書定義がどのように活用されたかの事例を見ることができる(図-4、5)。

図-4 ISO19650の各種情報要件定義の事例(bSI Awards 2023資料から)
図-4 ISO19650の各種情報要件定義の事例
(bSI Awards 2023資料から)
図-5 EIRとBEP・LOD(LOG、 LOI)の関連性について(bSI Awards 2023資料から)
図-5 EIRとBEP・LOD(LOG、 LOI)の関連性について
(bSI Awards 2023資料から)

 

ISO19650実現におけるopenBIMの役割

ISO19650で規定されているBIMプロ ジェクト推進方法論に従い、各プロジェクトに固有のBIM活用ユースケースを選択してBEPを策定し、BIM推進の効果を最大限に発揮させるのが、BIMマネジメントにおいて重要な要素である。
BEP策定において、openBIMアプローチを活用することで、BIMユースケースを体系的かつ効率的に行う取り組みが、bSI Awardsの事例から見出すことができる。
ここで、ISO19650とopenBIMの関連性について、概要を示したい。
 
欧州標準化委員会のBIM部会(CENTC442)の発行したopenBIMに関するガイダンス資料を基に、ISO19650とopenBIMの関連性を示したのが図-6である。

図-6 ISO19650のBIMプロセスにおけるopenBIMの役割
図-6 ISO19650のBIMプロセスにおけるopenBIMの役割

 
openBIMとは、建設ライフサイクル全体において多種多様な関係者をつなげることを目的とした、「国際標準を活用」、「多種多様なソフトウエア、ソリューションが参加できる」、「長期的かつ持続可能な相互運用性を実現する」という特長を持つオープンなBIM推進手法を意味する。
関連する国際標準にはISO19650および、次に示すbSIが策定している国際標準が関係する。
 

    • IDM(Information Delivery Manual:ISO29481-1)とは、BIMプロセスにおける異なるソフトウエア間の情報受け渡し手順を定めたドキュメント形式。
      プロセスマップと交換情報要件から構成される。
    • MVD(Model View Definition)とは、IDMにより定義されたBIMデータ連携に対応する、IFCのデータ定義仕様範囲(サブセット)の定義。
    • IFC(Industry Foundation Classes:ISO16739):BIMのプロジェクト情報のデータ構造、データ形式の標準。
      2024年には、土木・インフラ分野に拡張されたバージョンが国際標準となる予定。
    • IFD(International Framework for Dictionaries:ISO12006-3)とは、オブジェクト指向に基づく建設分野辞書データ表現の標準。
      IFDを活用した建設辞書サービスはbSDD(buildingSMART Data Dictionary)と呼ばれ、IFCやプロパティセットなどのクラス・属性情報定義、OmniClass、Uniclass2015などの建設分野の分類体系情報が格納されており、WebやAPIを通しての検索が可能である。

     
     

    共通データ環境(CDE)におけるopenBIMの役割

    共通データ環境CDEは、ISO19650においてBIMライフサイクル全体における情報管理の要とされている概念である。
    国土交通省のBIM標準ワークフローガイドライン(第2版)には、建築生産ライフサイクルにおいて設計・施工・製造・運用・維持管理などの各段階の関係者が、設計・施工情報(2次元、3次元、その他関連情報)を共有し受け渡すための手続きや環境、とされている。
    bSI AwardsにおいてもCDEの活用方法が重要な評価ポイントの一つとなっている。
     

    openBIMとCDEの4つのステータス

    CDEに格納される情報には①「作業中」、②「共有」、③「公開」、④「アーカイブ」の4つのステータス(状態)が定義されている。
     
    ①「作業中」:タスクチーム(受注者の作業チーム)が他のタスクチームからはアクセスできない未承認の情報を扱う状態。
    ②「共有」:作業が完了した後にプロジェクト内の他タスクチームと共有した状態で、参照される情報。
    ③「公開」:確定・承認された情報を別の新しいプロジェクトや資産運用などで利用するためプロジェクト外に公開した状態。
    ④「アーカイブ」:全てのトランザクションおよび変更要求を含むプロジェクト履歴の記録を格納する。

    図-7 ISO19650におけるCDEの4つのステータス
    図-7 ISO19650におけるCDEの4つのステータス

     
    「作業中」状態の場合、通常各チームは業務に最適な特定のBIMオーサリングツー ル(モデリングソフトウエア)を活用し、ネイティブBIMデータの作成・修正を行う、いわゆるlittle bimによるBIM推進を行う。
    一方、「共有」以降のBIMプロセスでは、複数分野のプロジェクト関係者が関わることになるため、openBIMを活用したBIG BIMの状況となる。
     

    little bim/BIG BIM(リトルBIMとビッグBIM)

    「little bim」は、BIMプロセスが一つの会社または専門部署(タスクチーム)に限られ、自社・自部署特有の設計プロセスのニーズに合わせてカスタマイズされた手法・ソリューションを活用するBIMプロセスを指す。
    一方、「BIG BIM」は、プロジェクト全体の共同作業のための情報交換を行うBIMプロセスを意味する。
    BEPの策定において、この両方をどのように効率的に組み合わせるかがプロジェクトの成否に関わってくると言える。
     

    Single Source of Truthの実現

    SSOT(Single Source of Truth:信頼できる唯一の情報源)とは、組織内の全員が同じデータに基づいてビジネスの意思決定を行うことを保証するため、情報の一貫性と正確性を確保する慣習のことを意味する用語である。
    BIMプロジェクトの情報管理においては、CDE上における共同作業を通じてSSOTを実現することになる(図-8)。

    図-8 共通データ環境CDEにおけるプロジェクトメンバーの情報フロー例(bSI Awards 2023資料から)
    図-8 共通データ環境CDEにおけるプロジェクトメンバーの情報フロー例(bSI Awards 2023資料から)

     

    重ね合わせモデルの手法について

    CDEの「共有」以降のBIMプロセスにおいては、重ね合わせモデル(Federated model)作成をどのように行うかが、BIM総合調整(BIM Coordination)を成功に導く重要な鍵となる。
    小規模なBIMモデルの場合、BIMオーサリングツールで統合する単一モデル方式を選択することもできるが、ある程度の規模のプロジェクトの場合、openBIMによりSolibriやNavisworksのようなモデルチェック専用ソフトウエアによる重ね合わせモデル方式が有効である(図-9)。
     
    bSI Awardsにおいては、IFC,BCF,openCDE APIといったopenBIMを構成する標準を採用したCDEソリューション(例:Catenda Hub)により、クラウド上における重ね合わせモデル機能による効率的なコラボレーション運用を行う事例も出てきている(図-10)。

    図-9 重ね合わせモデルの構成例(bSI Awards 2023資料から)
    図-9 重ね合わせモデルの構成例
    (bSI Awards 2023資料から)
    図-10 openBIMに準拠したCDEによる重ね合わせモデル表示例(bSI Awards 2023資料から)
    図-10 openBIMに準拠したCDEによる重ね合わせモデル表示例
    (bSI Awards 2023資料から)

     
     

    建築確認におけるIFC活用

    日本国内では国土交通省が公開した「建築BIMの将来像と工程表(増補版)」において、2025年から「BIMによる確認申請」が位置付けられ、まず「BIM図面審査」が開始され、その後「BIMデータ審査」に発展していく。
    「BIM図面審査」についてはBIMソフトウエアから出力された整合性の担保された図面(PDF)を審査対象とし、BIMデータは参考扱いとしながらもIFC形式として提出することになる。
     

    海外の建築確認へのIFCとAIの活用

    bSIサミット会議においても、世界各国のIFC形式のBIMデータを審査対象とする建築確認プロセスへの取り組みが報告されてきている。
    今回のサミットでフィンランド、ノルウェー、オーストリア・ウィーン市、シンガポールにおけるopenBIMによる建築確認プロセスの試みの最新状況を確認することができた。
    bSI Awardsにおいてもテクノロジー部門、研究部門などで、IFCとAI自然言語処理学習モデルを組み合わせたBIMモデル自動チェック手法に注目が集まった。
     

    シンガポールCORENET X

    2000年代からBIMの建築確認への活用を行ってきているシンガポールにおいては、2023年中にこれまでの建築確認BIMプラットフォームCORENETを、CORENET Xとして更新し、openBIMに基づく建築確認プロセスに取り組んでいる状況である。
    CORENET Xは、申請側と審査側の行政機関のコミュニケーションを活性化させる建築確認CDEとして機能する。
    シンガポールでは、建築申請に必要な情報要件をIFC-SG(図-11、12)として定義し、CORENET X上でのコミュニケーションにはBCFの活用、提出側の事前チェックにはモデルチェッカー、建築審査側では自動法規チェックの仕組みを取り入れるとしている。

    図-11 IFC-SG:属性情報マッピング表(Industry Mapping 20 Oct 2023)
    図-11 IFC-SG:属性情報マッピング表
    (Industry Mapping 20 Oct 2023)
    図-12 建築確認機関側が要求するIFCに基づく情報要求の事例(防火扉の例)
    図-12 建築確認機関側が要求するIFCに
    基づく情報要求の事例(防火扉の例)

     

    今後の展望

    本稿では、BIM標準化団体bSIのサミット国際会議における、ISO19650活用事例、建築確認へのIFC活用の動向を紹介し、openBIMがどのようにISO19650と連携しているかについて述べた。
    これらの事例が日本のBIM展開へ取り込まれ、さらにはbSI標準策定への国内からの参画が活性化することを期待している。
    bSJとしては、今後も各国のopenBIMの最新動向を把握し、広く共有していくことで、我が国のBIM推進に貢献していきたいと考えている。
     

    参照情報:

     
     
     

    一般社団法人buildingSMART Japan理事(技術フェロー)鹿島建設株式会社
    足達 嘉信 博士(工学)

     
     
    【出典】


    建設ITガイド 2024
    特集2 建築BIM
    建設ITガイド2024


     



「維持管理」新時代の到来見えてきた課題に対して、新技術を導入して試すことが最初の第一歩

2024年7月22日

はじめに

5年に一度の点検業務も2024年度で3巡目に突入する。
1巡目、2巡目と実施され、順々に多くの橋梁やトンネルの延命措置が行われてきた。
しかしながら、維持点検における課題点は非常に多い。
2014年より始まった定期点検だが、いまだに打音調査がマストの状態にあるのもその一つだ。
確かにうきの有無の顕在化や位置確認に関して、現地で打音すること以上の技術はない。
しかし、多くの企業がアイデアを出しているにもかかわらず、打音調査をやらずに済むような点検はいまだ皆無であるのだ。
 

維持管理の方向性=新技術の活用

国土交通省では、これからの維持管理について「定期点検における新技術活用の方向性(案)」を2020年に提示している。
これは1巡目、2巡目を経過して分かってきた課題点から、次世代の新技術開発のヒントを示した形だ。
 
内容としては、「部位、部材の状態把握は目的に応じて最適な技術を組み合わせて効率的に実施すること」「健全性の診断は AIなどの技術を活用しつつ、人(知識と技能を有する者)が実施すること」が挙げられており、具体的には「AIによる診断の仕組みづくりと定量化」「どこがどれだけ変わったか、壊れた損傷部の動きの変化の可視化」「現場における点検の効率化と状態把握の質の向上」の3つのポイントについて注目していることが分かる。
このことからも今までの維持点検の業務が大きく革新され、技術的にも飛躍することが期待されていることは明白だ。
維持点検の需要が高まる中、これから始まる第3巡目以降の道筋、すなわち新技術の活用が、維持管理の本流となることは間違いない。

現在の定期点検における技術活用
現在の定期点検における技術活用

 

新技術の現在地

もちろん1巡目、2巡目の間にまったくの技術革新がなかったわけではない。
遠望目視および近接調査としては赤外線サーモグラフィー画像解析が浸透し、打音調査を支援する技術として多くの現場やインフラ現場の点検に使用されている。
これは浅い内部の空洞部やうきを検出するには最適な技術である反面、現場の気温や環境の影響を受けやすいという弱点もある。
計測時の対策等が必要であることを考えても、状況や人員に左右されないさらなる新技術の登場が求められているのは想像に難くない。
 
 

現在の課題を考える

ここで、今までの点検現場に立ち返り、長年点検の現場でその苦労を味わってきた一人としての視点から、どのような課題があったのかを検証してみたい。
初めに結論を言ってしまえば、課題とは時間制約と作業者の技術格差によって肝心の作業のクオリティーが低下する懸念があることだ。
その原因を大きく二つの観点から見ていこう。
 
まず前提として、点検を必要とするインフラ構造物は大量にある。
そのため発注規模として1業務当たりの構造物の施設点検数が多くなる。
一つの現場にかけられる時間は限られており、慌ただしく作業が行われ、危険が伴うこともある。
現場環境や交通事情によっては、夜間しか作業が行えない場合もあり、常に現場は緊迫感に満ちあふれていた。
一つ一つ慎重に点検することが絶対条件となるが、正直なところ特徴も違えば損傷の程度も異なる構造物を一つ見るだけでも大変な作業である。
 
そして最盛期に比べればわずかではあるが新設構造物も増えており、点検はやってもやっても終わらないというのが実情なのだ。

 

熟練でも難しい打音調査

このような状況下で、まず現場で特に注意を払われてきた印象が強い作業は、打音調査である。
なぜなら叩き漏れがあった場合、その後にうきが進行して剥離し、第三者被害を招いたという事例が少なくないからだ。
加えて音の変化でうきや内部空洞の有無を判断する技術でもあるが、熟練でも経験が浅い者でも、うきの領域判定をすることは極めて難しい。
触診して常に健全部の音で耳をリセットするなど細心の注意を払った点検を行う姿勢が求められている。
これだけでも簡単にできる業務ではないことは明らかで、特に時間を要する作業であることは否めない。
 
この点検をおろそかにするとインフラの長寿命化はおろか、私たちの生活も保障されないことにつながっていく。
だからこそ、この作業の背景に、私たちの生活やライフラインが常に表裏一体の状態であることを忘れてはならない。

 

損傷図作成における落とし穴

また現場から帰ってきてからの資料整理も大変な苦労を要する作業だ。
その中でも損傷図の作成については、地域性があるため必要がない都道府県があるのも事実だが、記録に残している自治体の方が依然として多い現状としては、注目すべき作業であろう。
 
まず、帰社後に資料をまとめ上げるには、打音検査の合間を縫って損傷図や写真撮影などの記録作業を行う必要がある。
これはただでさえ忙しい現場では大きな負担だ。
しかし記録がおざなりであれば、残せる資料も精度の低いものとなってしまう。
 
さらに記録者によって精度にばらつきが出ることも大きな問題点である。
この作業はただスケッチするだけではなく、寸法や長さ、位置関係がとても重要な情報となる。
しかし実寸とは言いにくいアバウトな損傷図となってしまっているのが現実である。
実はこれが正確に書かれていないため、
1巡目と2巡目の定期点検を行った際の損傷図を比較することは困難とされている。
一部では1巡目のデータに追記するケースがあると言われているが、1巡目のデータが正しく書かれていなかった場合、2巡目で修正しようとしても、時間も手間もかかるため、実用化された現場は少ないと聞く。
ここから読み解くと過去の損傷図の正確さと精度については二の次であった感は否めない。
これから始まる3巡目やその後の維持管理においても何らかの措置が必要であり、抜本的な改革が必要だ。
 
 

維持管理の未来は

これらの現状に加え、実際にはこれから間違いなく到来する人手不足や点検施設量の増加に伴い、作業面と内業の負担軽減をもたらす新技術の登場が必要なことは明白だ。
冒頭で述べた赤外線技術の他にも、最近ではロボットやAIを用いた点検支援技術で手間や時間短縮につなげる技術が多く開発されている。
これによりヒューマンエラーや人手の確保の必要性が改善されたのも事実だ。
今後もAI学習の効果が進めば、さらに業務改善につながることは確実だろう。

新技術 差分解析システム(写真データベース)
新技術 差分解析システム(写真データベース)

 

新技術の積極的な導入は不可欠

新技術はいまだ発展途上にある。
その中で今できることは、積極的に新しい技術を取り入れていくことだ。
どんな些細な技術であっても現場の効率化や作業の能率アップが図れるものであれば、まずは試していかなくては始まらない。
例えばいきなり「3次元化」といわれても、対応できるかどうかはやってみなくては分からないからだ。
もちろんそれを実行するためには人材確保や教育、計測機材の導入など前準備が必要となってくる。
すぐに人は育たないし、計測技術もすぐに上がるものでもない。
また何が有用な技術であるかは各会社の体制によっても違ってくるだろう。
自社に当てはまるものはどれか、どんな技術であっても自分たちで試してみて現場で使えるかどうかを検証することが必要不可欠なのである。
 
やってみて業務改善につながればそれが維持管理の答えなのだと私は考えている。
まずは、昔の技術にとらわれず、新しい技術があれば積極的にとりいれながら業務を改善していく。
その繰り返しこそが維持管理にとってのベストアンサーである。
われわれもソフト開発メーカーとして新技術開発に微力ながら貢献できるように、現場の声と業界の動きに注目しながらイノベーションを加速させていきたい。
 
 
 

株式会社アイ・エス・ピー 代表取締役

波場 貴士

 
 
【出典】


建設ITガイド 2024
特集1 建設DX、BIM/CIM
建設ITガイド2024


 



土木におけるAI活用の現状と将来

2024年7月17日

第3次AIブーム

現在は、1956年に開催されたダートマス会議で「人工知能(AI)」という言葉が登場して以来3回目のAIブームと言われています。
第1次ブームでは、それまでは人間しかできないと考えられていた探索や推論が可能となり、コンピューターが数学の定理証明や簡単なゲームのような特定の問題に対して、答えを出せることが分かりました。
当時としては画期的なことでしたが、複雑な現実の問題を解くまでには至りませんでした。
 
第2次ブームでは、知識をルールの形で表してコンピューターに推論させる「エキスパートシステム」が登場し、より現実的な問題が解けるようになります。
知識を表現したルール自体は人間が作る必要がありますから、一般的な問題を解こうとすると膨大なルールが必要になります。
そこで、専門性の高い比較的限られた問題への適用が進められました。
 
AIの別の流れとして、脳内の神経細胞をコンピューター上で模擬した人工ニューロンを組み合わせて、人間のような思考を実現しようとする「ニューラルネットワーク」の考え方があります。
第3次ブームでは、コンピューターの進歩や、インターネットなどによって大量のデータが得やすくなってきたことを背景に、多層化したニューラルネットワークを用いる「深層学習」が発展します(図-1)。
2012年の国際画像認識コンペで、ヒントンのグループが深層学習を用いて画期的な精度の向上を実現(文献1)したことを契機に急速に進展しました。
同じ年に、大規模なニューラルネットワークに多数の画像を読み込ませることで、教師データを与えなくても「猫」を検出する人工ニューロンが現れたことが発表されたこともあり(文献2)、社会的な関心も高まりました。

図-1 深層学習に使われる多層化したニューラルネットワーク
図-1 深層学習に使われる多層化したニューラルネットワーク

 
2016年にはAIがトッププロの囲碁棋士を破ったことが話題になりました。
それには「強化学習」という考え方が用いられています。
囲碁のようなゲームでは明確な勝ち負けがありますから、人間が教えなくても、 AIが自分自身と膨大な対局をすることで勝ちにつながる手筋を学習し、自ら強化していくことができます。

さらに、2022年には、画像や対話を生成するAIが登場し、今なお大きな話題となっています。
その仕組みは、あらかじめ膨大な文章をトランスフォーマー(Transformer)と呼ばれるAIに読み込ませた「大規模言語モデル(LLM:Large Language Model)」です。
大規模言語モデルは、規模を大きくすればするほど精度が向上していくことが知られており、ますます規模を拡大しています。
 
このように、第3次AIブームでは、新しい技術が次々と生まれ、実社会での応用が進んでいます。
もはやブームとは言えないほどAIが日常的なものとなっていると言ってよいでしょう。
土木における応用も広がっています。
 
 

画像認識

第3次AIブームの端緒となったのが「畳み込みニューラルネットワーク(CNN:Convolutional Neural Networks)」と呼ばれる深層学習の方法を用いた画像認識です。
CNNの原型は福島邦彦氏によるネオコグニトロンであることは広く知られています(文献3)。
土木の実務では、現場や図面などを目で見て判断する業務が随所にありますから、画像認識AIの活躍の場も大きいと考えられます。
 
典型的なAIの応用として、点検の際の画像から、ひび割れを見つける問題があります。
一口にひび割れを見つけると言っても、図-2に整理したように、いくつかのレベルが考えられます(文献4)。
左図は、ひび割れの含まれる画像と含まれない画像を「分類」することで、ひび割れのある画像を検出するものです。
中央の図は、ひび割れのある領域を「バウンディングボックス」で囲んで検出しています。
右図は、ひび割れの箇所を画素レベルで分類して検出しているもので、「セマンティックセグメンテーション」と呼ばれます。
画像の中のひび割れの有無が分かればいい場合もあれば、ひび割れの長さや幅まで知りたい場合もあるでしょう。
画像認識の目的や用途によって異なる方法が用いられます。

図-2 分類・バウンディングボックス・セグメンテーションと教師データ作成コスト(文献4)
図-2 分類・バウンディングボックス・セグメンテーションと教師データ作成コスト(文献4)

 
この図の下に、AIに学習させるための教師画像を作成するコストのイメージが示されています。
左の画像分類では、画像ごとにラベルを付ける「アノテーション」をすればよいのですが、右のひび割れの画素を検出する場合は画素ごとにアノテーションする必要がありますから、手間が大きく異なります。
中央のバウンディングボックスはその中間くらいでしょう。
画像認識のAIを作るに当たっては、ニーズや用途とコストのバランスを考えて最適な方法を考えることになります(図-2)。
 
画像による物体検出は、建設現場でも有効です。
図-3は、移動中のクレーンのフックに吊り下げた重量計測用のクレーンスケールと鉄筋を検出した例です(文献5)。
安全管理を考えると、クレーンに吊られた重量物などはリアルタイムで検出することが望まれるので、ここでは「YOLO」と呼ばれる高速な手法が用いられています。
YOLOは「“You only look once(”一目見るだけでいい)」の頭文字で、ラップの YOLO「“You only live once”(人生一度きり)」の語呂合わせになっています。
AIの手法の名前には特長を端的に表したしゃれたものも多いです。
物体検出は、交通の計測や、廃棄物の検出などへの応用も進められています。

図-3 建設現場での物体検出(文献5)
図-3 建設現場での物体検出(文献5)

 
 

打音検査・異常検出

AIで分類できるのは画像だけではありません。
コンクリートの健全性を調べるために、打音検査が用いられますが、コンクリートを打撃する際の音響データを健全部と異常部に分類するのにもAIが適用可能です。
一例として、文献6では、図-4-1のように実際の構造物で録音した打音のデータに対して、「オートエンコーダ(自己符号化器)」(図-4-2)と呼ばれる深層学習を適用しています。
オートエンコーダは、入力と出力に同じデータ(この場合は打音の波形)を用いて学習することで、入力と同じ出力を再現する仕組みです。
正常音でオートエンコーダを学習させると、異常音を入力した場合にはオートエンコーダでは再現されないことが分かりました。
その性質を応用することで、打音の判別に成功しています。
オートエンコーダでは、人間がアノテーションして教師データを作る必要がないのも一つのメリットです。

図-4-1 打音の録音状況(文献6)
図-4-1 打音の録音状況(文献6)
図-4-2 オートエンコーダによる深層学習(文献6)
図-4-2 オートエンコーダによる深層学習(文献6)

 
ほとんどの構造物は健全ですから、異常のデータというものはそもそも少ないものです。
健全データと異常データをそのまま学習して、異常を検知しようとすると、異常データの方が圧倒的に少ないため、単に当てずっぽうで「健全」と判定するだけでも、高い正解率となってしまうことがあります。
そこで、この打音の事例のように健全を再現するAIによる予測値と実測値のずれから異常を検知したり、図-5のように多い方の健全データを減らすアンダーサンプリング、少ない方の異常データを増やすオーバーサンプリングなど、「サンプルバランシング」の手法などを用いたりすることもあります。
その他、シミュレーションでデータを生成したり、物理的知見を反映するしたりするなど、いろいろな解決法の研究が進められています(文献7)。

図-5 異常時データなどの不均衡なデータの取り扱い(文献7)
図-5 異常時データなどの不均衡なデータの取り扱い(文献7)

 
このように不均衡があるデータの場合にAIの性能を評価するには、単に全体的な精度のみならず、異常の見逃しにつながる未検出や、誤検出による空振りにも注意する必要があります。
AIの評価では、未検出に関する指標である「適合率(precision)」や、誤検出に関する指標である「再現率(recall)」が用いられるのが一般的です(文献8)。

 
 

AIはどこを見ているのか

AIはブラックボックスと言われますが、ある程度は、AIの根拠を示すことができます。
AIの推論結果を人間が解釈可能な形で出力する技術は「説明可能AI(XAI:eXplainable AI)」と呼ばれ、図-6のようなヒートマップもその一つです。

図-6 鋼主桁の腐食とAIの着目領域のヒートマップ(文献9)
図-6 鋼主桁の腐食とAIの着目領域のヒートマップ(文献9)

 
図-6は橋の点検時に撮影された写真から、健全あるいは損傷が軽微なものと、損傷が大きく補修などの検討が必要なものに分類するAI(文献9)で分類された、損傷が大きな場合の例です。
右のヒートマップは、画素ごとにAIの判定に寄与した度合いを表しています。
腐食が進んでいる主桁補剛材下端付近が赤色になっており寄与が大きくなっています。
点検写真を分類するAIでも、人間と同様の着目箇所の情報を使って判定していることが分かります。

 
 

大規模言語モデル

ヒートマップのようにAIが着目している領域の情報を利用するのが、「アテンション(注意機構、Attention)」と呼ばれる方法です。
アテンションを中心に据えたAIが、近年提案されたトランスフォーマーで、ChatGPTなどの大規模言語モデルや現在のAIの基本になっています(文献10)。
トランスフォーマーを提案した論文は「Attention Is All You Need」というタイトルで、アテンションの重要性が強調されています。
ビートルズの「All You Need Is Love 」を思い起こさせます(文献11)。
 
言語のアテンションは、文章の前後関係や翻訳や会話などの対となる文章から、単語間の関連度や注目度を抽出するものです。
文献12では、トランスフォーマーの一種であるBERTという手法を、SNSの投稿に適用して、災害に関係のあるものを抽出しています。
図-7は、災害に関係あると分類された投稿について、各単語のアテンションを、関連性が強いほど赤色が濃くなるように可視化したものです。
時間や住宅が水に浸かっている様子など、人間にとって重要な単語に注目していることが分かります。

図-7 災害に関係があると分類された投稿とアテンション(文献12)
図-7 災害に関係があると分類された投稿とアテンション(文献12)

 
大規模言語モデルでは、膨大な文章のパターンを事前に学習することで、人間に近い自然な受け答えが実現されています。
さらに、「プロンプト」と呼ばれる問いかけの方法を工夫したり、追加的な学習を行うことでモデルを微調整する「ファインチューニング(fine tuning )」を行ったりすることで、専門的な問題に対する回答を生成する試みも進められています(文献13)。
また、図-8は、別のユースケースとして、大規模言語モデルによってNETISの新技術を分類した例で(文献13)、点が近いほど類似性が高くなっています。
赤の工法と、青の製品や紫の材料に関する技術は入り乱れて表示されていて、関連性が強いことが分かります。

図-8 大規模言語モデルを用いた新技術の分類例(文献13)
図-8 大規模言語モデルを用いた新技術の分類例(文献13)

 
 

デジタルトランスフォーメーションに向けて

トランスフォーマーは、言語のみならず画像にも適用可能です。
画像の場合でも、専門分野の画像を追加してファインチューニングをすることができます。
インフラ点検の損傷画像などデータ数が限られる場合にも有望なアプローチであると考えられます。
 
図-9は、点検画像と、その画像に対応するアテンションを表示したアテンションマップの例です。
剝落やひび割れなど、損傷に関連する領域が強調されるようにアテンションが高くなっています(文献14)。

図-9 点検画像とアテンションマップ(文献14)

 
大規模言語モデルのベースとなるトランスフォーマーは、言語のみならず、画像などの多様なデータに適用できます。
言語、画像、センサーデータなどを組み合わせたマルチモーダルなデータへの拡張も可能です。
例えば、GPT-4Vでは、画像を言語で説明するなどの機能が大幅に強化されています(文献15)。
土木の実務では、特に、画像と言語からなるデータを用いる場面も多く、橋梁点検調書作成の省力化(文献16)に向けた研究や、土砂災害の画像から危険度を判定する研究(文献17)などが行われています。
 
文献18では、図-10のように点検時の変状画像に対する所見の生成を試みています。
技術者の所見を完全に再現するには至っていませんが、赤字の部分のポイントについては整合していることが分かります。

図-10 技術者とAIによる所見の比較(文献18)
図-10 技術者とAIによる所見の比較(文献18)

 
大規模言語モデルの土木への応用は始まったばかりですが、画像の利活用と合わせて、実際のさまざまな業務の場面で、直接、仕事に取り入れることのできるユースケースが考えられています。
AIによるデジタルトランスフォーメーションの一層の進展が期待されます。
 
 

文献

(1)Olga Russakovsky,Jia Deng,Hao Su,Jonathan Krause,Sanjeev Satheesh,Sean Ma,Zhiheng Huang,Andrej Karpathy,Aditya Khosla,Michael Bernstein,Alexander C.Berg,Li Fei-Fei:Image Net Large Scale Visual Recognition Challenge
https://doi.org/10.48550/arXiv.1409.0575
(2)Jeff Dean,Andrew Ng:Using large-scale brain simulations for machinelearning and A.I.
https://blog.google/technology/ai/using-large-scale-brain-simulations-for/
(3)福島 邦彦:深層畳み込み神経回路ネオコグニトロン,認知科学,2022年29巻1号p.14-23.https://doi.org/10.11225/cs.2021.061
(4)泉 翔太,全 邦釘:Attention機構を用いたDeep Learningモデルによるひび割れ自動検出,AI・データサイエンス論文集,2021年2巻J2号p.545-555.https://doi.org/10.11532/jsceiii.2.J2_545
(5)楠本 雅博,Ayiguli AINI,全 邦釘:建設現場における人工知能の活用事例,AI・データサイエンス論文集,2020年1巻J1号
p.301-306.https://doi.org/10.11532/jsceiii.1.J1_301
(6)江本 久雄,馬場 那仰,浅野 寛元,長瀬 大和:AI手法による打音検査の浮き判定の検討,AI・データサイエンス論文集,2020年1巻J1号p.514-521.https://doi.org/10.11532/jsceiii.1.J1_514
(7)宮本 崇,浅川 匡,久保 久彦,野村 泰稔,宮森 保紀:防災応用の観点からの機械学習の研究動向,AI・データサイエンス論文集,2020年1巻J1号p.242-251.https://doi.org/10.11532/jsceiii.1.J1_242
(8)“土木×AI”で起きる建設現場のパラダイムシフト【第13回】土砂崩落やインフラ点検など、用途ごとで最適化するためにAI性能を評価するには?https://built.itmedia.co.jp/bt/articles/2207/11/news024.html
(9)西尾 真由子,栗栖 雄一:橋梁点検部材損傷度判定CNNの可視化による判断根拠の理解と活用,AI・データサイエンス論文集,2020年1巻J1号p.92-99.https://doi.org/10.11532/jsceiii.1.J1_92
(10)杉崎 光一,阿部 雅人,全 邦釘:大規模言語モデルの専門領域への適用に関する検討,AI・データサイエンス論文集,2023年4巻3号p.474-481.https://doi.org/10.11532/jsceiii.4.3_474
(11)Attention Is All You Need.https://doi.org/10.48550/arXiv.1706.03762
(12)泉 翔太,堀 太成,山根 達郎,全 邦釘,藤森 祥文,森 脇亮:Deep Learningを用いたマイクロブログ投稿文の災害情報分類,AI・データサイエンス論文集,2020年1巻J1号
p.398-405.https://doi.org/10.11532/jsceiii.1.J1_398
(13)菅田 大輔,箱石 健太,一言 正之:土木・建設分野における大規模言語モデルの利活用に向けた検証と考察,AI・データサイエンス論文集,2023年4巻3号p.670-676.https://doi.org/10.11532/jsceiii.4.3_670
(14)櫻井 慶悟,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀:地下鉄トンネル点検時の一人称視点映像を用いたVision Transformerに基づく変状検出,AI・データサイエンス論文集,2022年3巻J2号p.470-478.https://doi.org/10.11532/jsceiii.3.J2_470
(15)Zhengyuan Yang,Linjie Li,Kevin Lin,Jianfeng Wang,Chung-Ching Lin,Zicheng Liu,Lijuan Wang:The Dawnof LMMs:Preliminary Explorations with GPT-4V(ision).https://doi.org/10.48550/arXiv.2309.17421
(16)青島 亘佐,宮内 芳維:大規模言語モデルの活用による橋梁点検調書作成の省力化に関する検討,AI・データサイエンス論文集,2023年4巻3号p.274-284.https://doi.org/10.11532/jsceiii.4.3_274
(17)稲富 翔伍,山根 達郎,金崎 裕之,全 邦釘:大規模言語モデルと画像セグメンテーションによる専門知識融合型土砂災害危険性判断手法,AI・データサイエンス論文集,2023年4巻3号p.507-514.https://doi.org/10.11532/jsceiii.4.3_507
(18)渡邉 優宇人,小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀:Visual language modelを用いた変状画像に対する所見の自動生成̶類似画像検索によるFew-shot learningの導入̶,AI・データサイエンス論文集,2023年4巻3号p.223-232.https://doi.org/10.11532/jsceiii.4.3_223
 
 
 

公益社団法人土木学会 構造工学委員会 AI・データサイエンス実践研究小委員会 副委員長
阿部 雅人

 
 
【出典】


建設ITガイド 2024
特集1 建設DX、BIM/CIM
建設ITガイド2024


 



 


新製品ニュース

木造建築物構造計算システム「KIZUKURI Ver9.0」をリリース木造建築物構造計算システム「KIZUKURI Ver9.0」をリリース


建設ITガイド 電子書籍 2024版
建設ITガイド2024のご購入はこちら

サイト内検索

掲載メーカー様ログインページ



  掲載をご希望の方へ


  土木・建築資材・工法カタログ請求サイト

  けんせつPlaza

  積算資料ポケット版WEB

  BookけんせつPlaza

  建設マネジメント技術

  一般財団法人 経済調査会