建設ITガイド

トップ >> 特集記事 特集記事

書籍版「建設ITガイド」に掲載した特集記事のバックナンバーです。

発注者が推進するダムCIM-立野ダム工事事務所の事例-

2022年9月26日

はじめに

当事務所は、i-Construction推進モデル事務所の一つとして、立野ダム本体建設事業を3次元情報活用モデル事業として取り組んでいるところである。
ダム事業の調査・測量・設計、施工、維持管理を通して、一元的にCIMモデルを共有・活用、発展させ、業務・工事の効率化・高度化を図るためにCIM活用の試行・検証を行っている。
 
ここで得られた知見やノウハウは、全国BIM/CIM担当者会議や整備局内のダムCIM分科会において共有することで、後発事業へ生かされる方針となっている。
 
本稿では、現在の立野ダム建設事業におけるCIMの取り組みについて報告するものである。

 
 

CIMの取り組み概要

当事務所におけるCIMの取り組みは、下記の3つを柱として、職員一人一人が問題意識を持ち、検討を行っている。
 
①総括CIM:阿蘇にふさわしい風景の追求
②施工CIM:地元企業にも着目した施工管理の合理化
③管理CIM:維持管理段階を見据えた管理手法の検討と体制づくり
 
今回は、このうち、今後の地元企業などへの展開を見据え、施工CIMに関する取り組みについて述べる。
 
 
基礎掘削
堤体基礎掘削工において、丁張設置の省力化を目指し、MGおよびMCを搭載したバックホウと、MGを搭載したブレーカを用いたICT土工を実施しており、従来工法であれば、丁張を1,000本近く設置して施工すべきところが、ICT土工により0本にでき、省力化が図られた。
 
また、掘削期間中の出来高・工程管理において、横断測量などの現場測量作業が不要となることによる省力化を目指し、3次元モデルを用いた出来高管理を実施した。
 
 
コンクリート数量算出への活用
コンクリート岩着部の施工数量算出は、凹凸の大きい地形から数量を求めるため、従来は2~5m程度の小間隔で横断測量を実施し、平均断面法にて数量を算出していたが、3次元地形モデルの活用により、横断測量が不要となり、試験的に実施した箇所では約60%の省力化が図られた。
 
 
遠隔臨場立会
法枠工の出来形管理において、UAV写真測量から得られる高密度な点群データを用いたPC上での出来形計測を行った。
点群データをモデル化し、法枠工の「法長」、「延長」、「吹付枠中心間隔」の出来形管理項目においてPC上で距離を計測し、現地測量作業の省力化を図るとともに、監督員検査においても、現地立会を行わず、机上確認での検査を実施し、その効果検証を行った。
 
また、基礎処理については現場で実施した検測などの動画を情報共有システムに登録することで、任意の時間に監督職員が確認を行うという手法の試行も行っており、高価な設備投資を行うことなく実施した。
 
これは地元Cクラスの施工業者が多くの投資をすることなく、気軽に取り組めるよう日常使いを念頭に試行した結果であり、i-Constructionモデル事務所の一つの目的である3次元データ活用の普及にあたる取り組みであると考えている。

岩着部の数量算出イメージ

図-1 岩着部の数量算出イメージ

遠隔立会イメージ

図-2 遠隔立会イメージ



 

今後の展開

立野ダム本体工事のように大手JVの施工会社においては、3次元データおよびCIMモデルを活用することにより、工事、数量算出、異工種間の調整、遠隔立会について、効率化・高度化が図られている。
一方、工事の多くは地元企業が受注することが多いことから、それほどの投資をしなくても、CIMに取り組めるように検討を進めているところである。
今後、当事務所が発注する工事などにおいて、地元企業が日常的に、効率化・高度化を図っていくための仕組みづくりが必要であるため、具体的な取り組みについて紹介する。
 
 
3次元データによる契約図書の取り組み
本事業においては、ICT活用工事により取得された点群データを活用するために、工事施工中および完成後の仮設工事用道路について、3次元データを作成し、本体工事と周辺工事(地元企業)との施工調整および工事契約図書の変更を行う取り組みを実施した。
従来の発注図面に加え、施工対象箇所および周辺の地形を3次元化し、発注データの一部として契約後ではあるが、提供した。
現在、受注した地元の施工業者と情報共有システムKOLC+)を活用し、受注時、施工途中、竣工時の各場面において、3次元データの活用方法や効果、地元企業による修正方法やデータの更新方法についてワークフローを整理するとともに、技術的課題を抽出し、改善策の検討を行っているところである。
 
 
施工管理の効率化、監督検査の合理化
施工管理の効率化、監督検査の合理化を目指し、施工管理に特化した情報共有システム(CIMPHONYPlus)を試行導入している。
想定している活用のメリットは、受発注者間で、特別なソフトウエアをインストールすることなく、①掘削形状などの「見える化」が可能となる、②掘削実績による断面確認、土量算出、出来高管理、出来形管理の作成が可能となる、③施工状況をVRへ出力し、遠隔立会が可能となる、④受発注者間で3次元モデルを共有し、そのモデルを活用し、設計変更などの協議が可能となる。
 
現在、工事受注者を交えた検討会を定期的に行っており、施工上の課題の解決策、施工調整、活用状況や効果について意見交換を実施し、メリット・デメリットの抽出、整理を行い、今後の活用方針について整理している。
 
 
情報共有による協議の省力化・省人化
現場で取得する点群データ、3次元モデルを受発注者間で情報共有システムを活用して共有することにより、協議時の見える化と職員のPCで気軽に3次元モデルを確認できる環境を構築し、協議の省力化、省人化を図っている。
また、情報共有システムの利用が、地元施工業者の負担とならないよう、事務所でシステム環境を構築・提供し、どのような効果があるのか、また、それぞれの活用場面を整理することで、今後、発注を予定している工事においても遠隔臨場機能や3Dモデル閲覧機能などの積極的な活用を推進していくことが可能となると考えている。

施工調整モデル

図-3 施工調整モデル

3次元モデルの共有イメージ(KOLC+)

図-4 3次元モデルの共有イメージ(KOLC+)
   出典:https://kolcx.com/feature/overview/



 

おわりに

本年度の取り組み成果による課題などを整理し、次年度以降の工事において、さらに地元企業にCIMが浸透していくようにさまざまな取り組みを行い、CIM活用を進める方針である。
 
さらに本事業は2年後には管理段階に移行することから、施工時の情報をどのように継承していくか、管理において必要なCIMモデルとは何か、どのようにすれば活用することができるのか、事務所としてのメリットは何か、といったユースケースの検討を進めている。
これらの取り組みについては、i-Constructionモデル事務所における成果として、ダム事業のみではなく、さまざまな工種において効率化・高度化を図るための基礎資料となるよう、取りまとめを行い、局内で展開したいと考えている。

 
 

国土交通省 九州地方整備局 立野ダム工事事務所 建設監督官
弓削 琢郎

 
 
【出典】


建設ITガイド 2022
特集1 建設DX、BIM/CIM
建設ITガイド_2022年


 
 



九州地方整備局における三次元管内図の取り組み

はじめに

河川CIMの基本フレーム化からスタート
九州地方整備局(以下、整備局)は、河道管理を目的とした河川CIMの導入を平成27年より進めており、これまでに河川CIMの基本フレーム(図-1)(以下、基本フレーム)を代表河川で構築している。
また、本年度からは河川管理の高度化・効率化を図るために河川CIMで培った知見をDX技術に発展させるための検討を進めているところである。
 
 
三次元管内図へ応用・発展へ
この一環として、河川の水系や管理区間の三次元地形データを基礎資料として表示する「三次元管内図」の構築にも取り組んでおり、整備局ではこれに基本フレームを応用・発展させている。
 
本稿では、整備局の基本フレームの構成や活用事例を紹介しながら、「三次元管内図」の概要について紹介する。
なお、本稿でいう「三次元管内図」とは、河川管理用三次元活用マニュアル(案)(2020)の「閲覧機能、GIS機能、検索機能を備えたもの」である。

基本フレームの構成

図-1 基本フレームの構成



 

モデルの概要

基本フレームとは?
河川管理に用いるデータは膨大であり、全てを三次元化することや各種データをモデルに紐付けるとデータ容量が大きくなり、一般的な規格のPCではモデルの動作性が低下し、日常的な使用に適しない。
シンプルかつ職員が使い勝手がよいシステムとするためには職員が日常で活用したい情報を厳選し、必要最低限の情報で構成する必要がある。
このためモデル構成は全体モデル、詳細モデルおよび応用モデルの3部構成とした(図-1)。
なお、各河川共通の基本的情報を全体モデルと詳細モデルに分類し、これを基本フレームとした。
これに、応用系モデルで各河川が抱えている課題に対して必要に応じ、詳細モデルに情報を追加することとした。
情報量が膨大になることが想定されるため、全体モデルから確認したい箇所の詳細モデルへ移行し、必要情報を確認できるなど、操作性も踏まえて検討を進めた。
 
なお、全体モデル、詳細モデルの閲覧については、ICT施工などで事前に保有していたソフトとの互換性なども考慮した上で無償ビューワソフトAutodesk Navisworks Freedomを使用してモデル内容や職員PCでの操作性を検証した。
なお、Autodesk Navisworks Freedomの機能として延長・面積計測や任意箇所の断面化などが可能である。
 
 
全体モデルとは?
全体モデルは、管内全体の地理空間情報を三次元地形上で確認できるモデルとして構築している。
そのデータ構成として、既存の管内図、治水地形分類図を用いて空間的な位置情報を把握し、また、詳細モデルへの索引図としての機能も持たせている(図-2)。
 
 
詳細モデルとは?
詳細モデルは、「川の概要を知る」ために航空写真、河川図(S=1:2500)、距離標を詳細地形に合わせて三次元化したモデルと「川の弱点を知る」ための定期縦横断(4時期)を同様に三次元化したモデルから構成している。
詳細モデルはメッシュデータと点群データの2種類を検討している。
点群データは、既存の横断図は確認できるものの、点の集合体であるため地形に近づくと形状が分かりにくくなる課題がある。
このため、活用場面に応じたモデルの選択なども必要となる。

全体モデルと詳細モデル

図-2 全体モデルと詳細モデル



 

三次元管内図各種データのイメージ

三次元管内図への各種データの取り込みイメージを図-3に示す。
 
 
河床変動および植生の発達状況の把握
河床変動の把握を目的として2時期の河道地盤高を基に標高差を算出し、河床変動量を色付きの点群データとして構築した。
構築したモデルを詳細モデルに追加することで、構築範囲の土砂の侵食や堆積している箇所の把握が容易となる。
加えて、管理基準面が設定されている河川であれば、それとの河道地盤高の標高差を算出することで、河川管理が必要な箇所をより具体化させることが期待できる。
 
また、河道内樹木の把握も同様に行うことで、定量的な評価などが可能となる。
 
 
河川環境情報図の重ね合わせ
植生や生物などの情報を整理した河川環境情報図を地形モデルに重ね合わせたモデルを詳細モデルに取り込むことで、保全対象種が好む物理的環境の特徴把握やその後の地形変状による予測などを行うことが可能となる。
 
 
地質構造の把握
既存の地質データを基に地質縦断図と横断図のパネルダイアグラムを詳細モデルに読み込むことで、地質構造の把握を可能とする。
 
活用事例として、堤防や樋管構造物における変状要因の考察や河床掘削における土質区分確認などが可能となる。
 
 
事業による背後地への影響把握
河川整備計画の形状をCADデータなどから三次元化し、詳細モデルに読み込むことで、事業による現況施設や背後地への影響について事前に三次元空間上で把握することが可能となる。
 
活用事例として、整備後の景観、用地協議対象物、改築が必要となる既存施設などを確認することができ、地元説明や関係機関調整などを行う上で非常に有用なツールとなることを期待している。
 
 
竣工図の重ね合わせ
既存の二次元竣工図を三次元化し地形データと重ね合わせることで、その後の維持管理に活用することが可能となる。
 
活用事例として、河床洗掘後における低水護岸基礎の健全度を評価することが可能となる。
なお、構造物データの三次元化については、詳細部分まで三次元化すると作業量が増えるため、目的に合わせて、構造物の三次元化を簡略的にモデル化するなど河川ごとに随時検討する必要がある。

三次元管内図各種データのイメージ

図-3 三次元管内図各種データのイメージ



 

おわりに

三次元管内図の整備に当たっては、全河川共通情報のほか各河川の課題解決に向けて、適切なデータが組み込まれているのかを意識して行うことが必要である。
 
その中で、三次元管内図が、維持管理・調査・計画設計・施工の各河川管理段階の状態を確認・連携するプラットフォームになると期待している。
 
今後は引き続き三次元データの引継ぎ手法の事例を蓄積し、PDCAサイクルの仕組みを構築し、現場の河川管理のDX化に向けた足がかりとしたい。

 
 

国土交通省 九州地方整備局 河川部 河川管理課

 
 
【出典】


建設ITガイド 2022
特集1 建設DX、BIM/CIM
建設ITガイド_2022年


 
 



BIMにおける国際的なプロフェッショナル認証 -buildingSMARTのBIMプロフェッショナル認証が国内で始動-

2022年9月12日

はじめに

一般社団法人buildingSMART Japan(以下bSJ)は、建設業界におけるデータ流通・相互運用の促進を目的として、国際組織buildingSMART International(bSI)の日本支部として1996年に設立され、BIMデータの国際標準規格であるIFC(Industry Foundation Classes)や、BIM推進に関連する標準化活動を、国際標準化機構(ISO)と協調しながら推進してきている。
BIM普及を業界全体に展開していくには、ワークフローや情報マネジメントを如何に体系的、組織的に実施していくかが重要な課題の一つであり、そのためにこれまで国内外においてさまざまなBIMガイドラインや標準規格が発行されてきている。
2018年には、BIMの情報マネジメントに関する国際標準(ISO19650)が発行され、国内においては、2020年3月に、建築BIM推進会議から、「建築分野におけるBIMの標準ワークフローとその活用方策に関するガイドライン(第1版)」が公開された。
 
このような業界全体のBIM推進へ対応するため、bSIはBIMの基本的な概念、用語やプロセス、関係者の役割などの定義を明確にし、BIMに携わる個人の知識、技能のレベル向上を図るため、「openBIMプロフェッショナル認証(通称、BIMプロフェッショナル認証)」を2018年に開始した。
 
本稿では、BIMプロフェッショナル認証の全体像と日本国内での展開状況、buildingSMARTが提唱するopenBIM(オープンBIM)の概念、オープンBIM推進の鍵となるBIM情報マネジメント国際標準のISO19650の概要などについて紹介する。

 
 

buildingSMARTプロフェッショナル認証とは

bSIのopenBIMプロフェッショナル認証は、一貫性のある世界共通なBIM推進環境を実現するために、bSIが策定した体系的な学習成果単元に基づくBIM関連の基本的知識、共通概念などの獲得の機会を、認定されたトレーニングプロバイダを通じて提供することを目的としている(図-1)。

buildingSMART プロフェッショナル認証の体制

図-1 buildingSMART プロフェッショナル認証の体制



 

【buildingSMARTプロフェッショナル認証のメリット】
・ISO19650シリーズ、オープンBIMなどの基礎的な理解、用語の知識の獲得
・国際標準の原則に基づいて開発された、一貫したトレーニングによる技能の向上・国際的に認知された共通の学習成果による技能の証明

 
 

【openBIMプロフェッショナル認証の構成】
openBIMプロフェッショナル認証は基礎編と実践編から構成され、技能・技術を学習する際のスキルレベルを定義しているBlooms分類法(知識・理解・応用・分析・評価・創造)との対応が定義されている(図-2)。
 
・基礎編:buildingSMARTプロフェッショナル認証の第1レベルで、主に「知識と理解」を問う形式で、基本的な理解レベルを認定する。
・実践編:基礎編に続く上位レベルのbuildingSMARTプロフェッショナル認証は、応用学習と実践的な専門知識を含む総合的なレベルのスキルを認定することを予定している。
 
2018年に基礎編の初級レベルとなるベーシック(Basic)カリキュラムの認証がドイツ支部から開始された。
続いてCOBieカリキュラムが開始され、現在、設計者(Designer)、建物オーナー・運営者(Owner/Operator)カリキュラムの策定が進んでいる(図-3)。
実践編に関しては、現時点でbSIプロフェッショナル認証委員会が検討を進めている状況である。

buildingSMART プロフェッショナル認証の体制

図-2 buildingSMARTプロフェッショナル認証の構成(基礎編・実践編)


buildingSMART プロフェッショナル認証の体制

図-3 buildingSMART プロフェッショナル認証の体制



 

【オープンBIM学習成果(Learning Outcome)について】
openBIMプロフェッショナル認証の基礎編ベーシックカリキュラム(Foundation Basic)においては、オープンBIMに対しての学習成果項目を定義している(図-4)。

buildingSMARTプロフェッショナル認証基礎編のカリキュラム構成

図-4 buildingSMARTプロフェッショナル認証基礎編のカリキュラム構成



 

【トレーニングプロバイダと国内展開について】
openBIMプロフェッショナル認証のトレーニング(講習)は、buildingSMART各支部で登録されたトレーニングプロバイダから受講することができる。
トレーニングプロバイダは、bSIが提供する学習成果フレームワーク、オープンBIM知識体系などに基づくトレーニング計画を作成し、支部の審査を通ることにより、bSIの認定トレーニングプロバイダとして登録されることになる。
bSJは2021年春からトレーニングプロバイダの募集を開始し、国内の4社からの申請があり、2021年12月時点で1社がトレーニングを開始している状況である。

 
 

【各国の状況】
openBIMプロフェッショナル認証は、オーストリア、ベネルクス、中国、フランス、ドイツ、香港、イタリア、日本、ノルウェー、ロシア、スペイン、スイス、米国の各支部において展開されている(図-5)。
各支部では、各国語のトレーニングコンテンツ、オンライン認定試験環境が準備され、トレーディングプロバイダー数、受講者と合格者数も年々伸びてきている(2021年12月時点:トレーニングプロバイダは113、合格者は5178)。

オンラインテストプラットフォーム(左下)、トレーニングプロバイダおよび合格者一覧ページ(図右)

図-5 オンラインテストプラットフォーム(左下)、トレーニングプロバイダおよび合格者一覧ページ(図右)



 

BIM情報マネジメントの国際標準ISO19650
openBIMプロフェッショナル認証の学習成果単元の一つであるISO19650について、その概要を以下に示す。
英国では、2011年のBIM導入推進政策開始により、BIMプロセスにおける発注者や受注者の役割、BIMプロセスのさまざまなタスクに関する用語や役割の整理や定義を行うため、BIM導入へのガイドライン資料を英国標準BS/PAS1192シリーズとして策定した。
PAS1192-2:2013は英国規格協会によって2013年に発行され、特にBIMプロジェクト推進に焦点を当て、情報マネジメント要件を規定した。
その後、BIMプロジェクトにおける情報マネジメントの国際標準であるISO19650-1とISO19650-2が、BS1192シリーズに基づいて2018年末に発行されることとなった。
 
ISO19650では、プロジェクト開始段階で発注者側の情報要件を規定し、その内容を受注者側がBIM実行計画(BEP)に取り込むことや、プロジェクト期間中の情報をPIM、竣工後の情報をAIMとして、発注者と受注者の情報要件・役割を明確にした概念となっていることが特長の一つである(図-6)。
 
ISO19650で導入された主要な用語を以下に示す。
 
・PIR(Project Information Requirements):プロジェクト情報要件
・AIR(Asset Information Requirements):資産情報要件
・EIR(Exchange Information Requirements):交換情報要件
・BEP(BIM Execution Plan):BIM実行計画(EIRの内容に対応)
・CDE(Common Data Environment):共通データ環境
・PIM(Project Information Model):プロジェクト情報モデル(PIRと対応)
・AIM(Asset Information Model):資産情報モデル(AIRと対応)

BIM情報マネジメントの国際標準ISO19650の概要

図-6 BIM情報マネジメントの国際標準ISO19650の概要



 
buildingSMARTが推進するオープンBIM
BIM情報マネジメントの国際標準ISO19650は、buildingSMARTが推進するオープンBIM(openBIM)においても重要な構成要素となっている。
以下にオープンBIMの特長を示す。
 
・オープンで中立的な国際標準を活用。
・多種多様なソフトウエア、ソリューションが参加できる。
・長期的かつ持続可能な相互運用性を実現する。
 
オープンBIMにおいて活用される国際標準として以下のものが挙げられる。
 
・BIM情報マネジメントの国際標準ISO19650
・BIMデータの国際標準ISO16739(IFC:Industry Foundation Classes)
・BIMデータ連携仕様記述に関する国際標準ISO29481(IDM:Information Delivery Manual)
・辞書情報デジタル表現の国際標準ISO12006(IFD:International Frameworkfor Dictionaries)
 
ISO19650で規定されているAIR,PIR,EIRなどの情報要件に対応したBIM実行計画(BEP)を作成する際、PIMを構築する各BIMデータ作成タスクや情報交換ポイントにおいて、必要なデータの内容やデータ連携仕様を記述するためにIDMを活用することができる。
BIMデータ連携の場面においては、IDMの内容を取り込んだMVD(Model View Definition:IDMの内容をIFCと対応付ける手法)に対応したBIMソフトウエアのIFCデータ入出力によって、計画された情報伝達が可能となる(図-7)。
 
今後の日本国内におけるopenBIMプロフェッショナル認証普及のため、bSJはopenBIMプロフェッショナル認証の基本テキストとして、bSIが監修した書籍(英語版)の日本語版を出版する。
bSIプロフェッショナル認証委員会関係者が執筆に関わり、学習成果内容を網羅した内容となっている(図-8)。

ISO19650とオープンBIMの接点

図-7 ISO19650とオープンBIMの接点


ISO19650とオープンBIMの接点

図-8 オープンBIMの教科書「The BIM Manager」



 

今後の展望

本稿では、2021年にbSJで開始したオープンBIMに基づくbuildingSMARTのopenBIMプロフェッショナル認証についての概要、オープンBIMと深い関係にあるBIM情報マネジメント国際標準ISO19650などの概要を説明した。
 
BIMの展開は、設計、施工フェーズを超えて、製造業、サプライチェーン、インフラストラクチャー、運用・維持管理、スマートシティなどの領域に広がってきている。
BIMデータの連携は、建設産業の関係者から、より広範囲な製造業、IoT・デジタルツインやロボット技術を伴うサービス業にも拡張していく状況である。
産業横断的な情報要求をBIMデータ連携で実現していくためには、今回紹介したISO19650や、IFC,IDMなどの国際標準に基づいたオープンBIMの手法を、より広い関係者に広げていくことが重要となる。
今後、日本のデジタルトランスフォーメーションDX実現を加速するには、オープンBIMの概念を中心に据えたbuildingSMARTプロフェッショナル認証の展開が鍵となっていくと考えている。
 
 

参考文献:
・buildingSMART Professional Certification:https://education.buildingsmart.org/
・トレーニングプロバイダ・合格者一覧:https://education.buildingsmart.org/registry/ 
・bSJオープンBIM基礎講座:https://youtu.be/0XQmU1tIt2g
・ISO19650-1:2018,BIMを使用する情報マネジメント 第1部:概念及び原則

 

 

一般社団法人 buildingSMART Japan 理事・技術連携委員会委員長 buildingSMART Fellow
足達 嘉信 博士(工学)

 
 
【出典】


建設ITガイド 2022
特集2 建築BIM
建設ITガイド_2022年


 



四国地方整備局におけるBIM/CIMの取り組みについて

はじめに

四国地方整備局では平成24年度からBIM/CIMを活用し、これまでに業務52件、工事23件で活用を行っています(図-1)。
業務では道路予備設計や測量・地質調査、橋梁・トンネルの詳細設計などにおいて、本体の鉄筋・付属物の干渉チェックや橋梁構造の比較検討、地元説明などで活用、工事では鋼橋上部工事やトンネル工事において施工計画の検討や干渉チェック(図-2)、関係者協議、危険予知活動(写真-1)、出来型計測などに活用しています。
今後は令和5年度からの小規模を除く全ての公共事業におけるBIM/CIM原則適用に向け、3次元設計ストックを順次拡大し、施工段階で活用していく予定です。
これらを本格的に進めるために、四国地方整備局では令和2年度に各事務所に高性能PCを導入するとともに発注者の役割を担うための人材育成を本格化させたところです。
 
また、BIM/CIM原則化を効率的に進めるためには、それぞれの役割を担っている発注者、設計コンサルタント、建設会社の全てが一体となって取り組む必要があり、人材育成などの体制整備が課題の一つといえます。
 
この課題に対応するため、四国地方整備局においても人材育成センター整備に向け、令和3年度から検討を本格化する考えです。

BIM/CIMの実施状況(四国直轄工事・業務)

図-1 BIM/CIMの実施状況(四国直轄工事・業務)



 

【施工段階】効率的な設計照査(R2-4外環余戸南第1橋上部P35-P41工事)

図-2 【施工段階】効率的な設計照査(R2-4外環余戸南第1橋上部P35-P41工事)


【施工段階】現場における危険作業の周知に活用(R1-2外環空港線洗地川橋(下り)上部工事)

写真-1 【施工段階】現場における危険作業の周知に活用(R1-2外環空港線洗地川橋(下り)上部工事)



 

モデル事務所の取り組みについて

松山河川国道事務所は平成30年度に『i-Constructionモデル事務所』に認定されており、計画段階からBIM/CIMを活用する全国でも数少ない事例として、「松山外環状道路インター東線」事業において予備設計から「3次元データを活用」し効率化・省力化を推進しています。
 
BIM/CIMの活用で、フロントローディングを推進し、後工程に必要な情報を事務所内の測量設計・用地買収・施工・管理など関係者で意見交換を行いながら取りまとめを行っています。
 
また、クラウドで各フェーズの情報共有を行うだけでなく、測量設計・用地買収・施工・管理など複数の関係課のデータをとりまとめ、それらの3次元データに時間軸を含めた「4次元データ」として「情報プラットフォーム構築」を進めており、これにより事業全体の最新情報がステップごとに可視化できると考えています。
このほか、事業の地元説明会などにおいてBIM/CIMモデルを活用し、「見える化」することによって地域住民の事業への理解や協力がより深まり合意形成が効率的に行えるようになりました(図-3)。
 
発注者のBIM/CIM活用のポイントは、実現したい内容を明確にして設計コンサルタントの技術支援を得ながら目的を達成することと考えます。
BIM/CIMモデル作成を目的化することなく、ここで得たBIM/CIMマネジメントの知見を水平展開し、発注者の人材育成のみならず、地域のコンサルタントとともに進み、裾野を広げていくことでBIM/CIMの原則化につなげていきたいと考えています。
 
また、i-Constructionをより一層促進し、魅力ある建設現場を創出するためには、官・学が相互支援を行いながら取り組む必要性があることから、令和2年7月2日に愛媛大学と「i-Construction推進のための連携・協力に関する協定」を結んで、相互協力を進めております。
 
その一環として、3Dデータの利活用と事務所の若手技術職員と今後の担い手となる学生の育成を目的とした「連携講義」を開催しており、令和3年度は、松山河川国道事務所からi-Constructionを取り入れた事業(図-4)を設定し、講義の中で3Dデータの活用方法を習得するほか、活用した事業上の課題解決について議論を行うことで、BIM/CIMの有効性の把握や課題抽出能力など、さらなる効率化の取り組みについて考えることを学ぶとともに、担い手の技術習得に貢献する取り組みも計画しています。

【設計段階】地元説明会での活用(3D映像)(松山河川国道事務所松山外環状道路インター東線)

図-3 【設計段階】地元説明会での活用(3D映像)(松山河川国道事務所松山外環状道路インター東線)


愛媛大学と連携した講義(案)

図-4 愛媛大学と連携した講義(案)



 

インフラDXの取り組みについて

四国地域において、地域住民のニーズを基にデータとデジタル技術を活用し、社会資本整備や公共サービスの改革を推進するとともに、業務そのものや、組織、プロセス、建設業や四国地方整備局の文化・風土や働き方を改革し、建設業の生産性の向上を図るとともに、インフラへの国民理解を促進し安全・安心で豊かな生活を実現するため、各部局が横断的に連携してインフラ分野のDXを推進することを目的に、「四国地方整備局インフラDX推進本部会議」を設置しました(図-5)。
令和3年度の取り組みとしては、令和3年8月24日に四国地整全体として取り組む「インフラDX推進計画」を策定し、中でも、地域の建設業および国・県・市町村の技術者のために、「インフラDX人材育成センター」の整備計画(案)および研修など計画(案)を策定や関係業界団体、大学などおよび県・市町村と連携し、方向性を検討していきたいと考えています。

四国地方整備局におけるインフラDX推進体制

図-5 四国地方整備局におけるインフラDX推進体制



 

おわりに

四国地方整備局においては、中長期的な担い手確保・育成の重要性を鑑み、モデル事務所で得られた知見を四国内に水平展開し、またインフラDXの取り組みを進めることで、BIM/CIM活用をより一層推進し、建設現場を魅力的でスマートな職場へと改革していきたいと考えています。

 
 

国土交通省 四国地方整備局 企画部 技術管理課 技術検査官
阿部 浩之

 
 
【出典】


建設ITガイド 2022
特集1 建設DX、BIM/CIM
建設ITガイド_2022年


 
 



3D都市モデルの整備・活用・オープンデータ化プロジェクト(Project PLATEAU)

2022年8月25日

はじめに

現在、政府では、サイバー空間(仮想空間)とフィジカル空間(現実空間)を高度に融合させたシステムを構築することにより、経済発展と社会的課題の解決を両立する、人間中心の社会「Society5.0」を実現すべく取り組んでいる。
 
Society5.0の実現は、都市の問題を扱う都市政策にとっても重要な課題であり、スマートシティの取り組みをはじめとして、都市政策の領域においても、データや新技術を活用し、人間中心のまちづくりをさらに進めていくことが喫緊の課題となっている。
 
このような問題意識のもと、国土交通省都市局では、2020年度から「Project PLATEAU(プラトー)」を新たにスタートさせ、「まちづくりのデジタルトランスフォーメーション(UDX:Urban Digital Transformation)」に取り組んできた。
その目的は、都市空間を「3D都市モデル」と呼ばれるデータによって再現し、これを活用してまちづくりに新たな価値をもたらすことにある。
このため、2020年度のPLATEAUでは、全国56都市を対象に、面積約10,000km²、建物約1千万棟という世界的にも前例のない規模で3D都市モデルを整備し、さらに、これを活用して40以上の実証実験やフィージビリティスタディを展開した。
 
また、3D都市モデルはオープンイノベーションの観点から、オープンデータ化を前提として整備しており、2021年3月から「G空間情報センター」において順次データを公開し、2021年8月に全国56都市のオープンデータ化を完了した。
データについては、政府標準利用規約などのオープンライセンスを採用することで二次利用を可能としており、各分野における研究開発や商用利用の活性化を狙っている。
 
本書では、Project PLATEAUの概要と今後の展開について紹介する。

 
 

Project PLATEAUの概要

(1)「3D都市モデル」とは何か

PLATEAUでは、都市空間のデジタルツインあるいはまちづくりのDXを実現するための中核となる概念として、「3D都市モデル」を定義している。
 
3D都市モデルとは、単なる“都市空間の3Dモデル”ではない。
既に商用サービスやオープンデータとして提供されている一般的な“都市空間の3Dモデル”は、都市を構成する建物や橋、道路などのさまざまなオブジェクトをCADソフトなどを用いてモデリングし、サイバー空間上で表示する。
つまり、都市空間の“幾何形状”をサイバー空間上で再現するものであり、いわゆる「ジオメトリモデル(Geometry Model)」と呼ばれるものである。
 
PLATEAUが整備を進める3D都市モデルは、このような幾何形状(ジオメトリモデル)に、「建物」、「壁」、「屋根」などの地物定義や、「用途」、「構造」、「築年」、「災害リスク」などの活動的な意味(属性情報)―つまりヒトにとっての都市空間の意味―を付加した形で構築される点に最大の特長がある。
このような“都市空間の意味”は「セマンティクス(Semantics)」と呼ばれており、3D都市モデルとは「ジオメトリとセマンティクスの統合モデル」と呼ぶことができる(図-1)。
 
このような統合モデルを可能とするデータ形式として、「CityGML」が国際的な標準規格として定められており、今回整備した3D都市モデルもCityGMLを採用したものである。
PLATEAUでは、「3D都市モデル」を「CityGML形式により都市スケールで整備されたジオメトリとセマンティクスの統合モデル」と定義している。
 
3D都市モデルのセマンティクスを用いることで、ジオメトリモデルのみではできなかった高度な分析、可視化、シミュレーションを都市スケールで実現することが可能となる。
 
例えば、「屋根(roof)」の属性値が含まれたジオメトリを抽出し、角度や傾き、日陰などを入力することで、都市スケールで太陽光発電シミュレーションが可能とな
る。
また、屋内外の歩行可能な「床(floor)」や「歩道(sidewalk)」を抽出すれば、屋内外を含む立体的な避難シミュレーションを行うこともできるようになる。
他にも、建築物の「壁面(wall)」の位置や材質(material)情報を活用することで、騒音や電波の拡散・減衰シミュレーションなども可能となる。
 
このように、ジオメトリとセマンティクスの統合モデルは、都市空間の再現を限りなく緻密に行うポテンシャルを有している。
換言すれば、コンピューター/プログラムが認識する3D都市モデルのデータを限りなく現実に近づけることが可能となる、このようなデータの“マシンリーダブル(machine readable:機械可読性)”こそが、まちづくりのDX/都市空間のデジタルツインの実現に向けた3D都市モデルのポテンシャルであるといえる。
 
3D都市モデルのセマンティクスを生かしたユースケース開発はまだ萌芽的ではあるものの、国外ではCityGMLを採用する
動きが広がっており、今後のユースケース拡大が期待されている。
 
PLATEAUでは、3D都市モデルの整備とともに、これを用いたユースケースの開発、3D都市モデルの整備・利活用ムーブメントの惹起、オープンデータ化に取り組むことにより、まちづくりのDXを推進し、「全体最適・持続可能なまちづくり」、「人間中心・市民参加型のまちづくり」、「機動的で機敏なまちづくり」を実現していくことを目指している。

3D都市モデルの導入ガイダンス(国土交通省都市局)

図-1 3D都市モデルの導入ガイダンス(国土交通省都市局)


(2)「3D都市モデル」の整備

前述のとおり、2020年度のProject PLATEAUでは、東京23区をはじめ全国56都市を対象に3D都市モデルのデータ整備を実施した。
 例え
3D都市モデルは、都市計画のために作成されている都市計画基本図などの都市の図形情報、航空測量などによって取得される建物・地形の高さや形状情報、都市計画基礎調査などによって取得された建物・土地の利用現況や災害リスク情報などの属性情報を用いて整備される。
すなわち、3D都市モデルの整備は、地方公共団体が保有する既存データを利用して作成することを基本としており、新規測量や新規データの取得は補完的に行われる。
このような方法によって、比較的低コストで3D都市モデルを整備することが可能となる(図-2、3)。

3D都市モデルの導入ガイダンス(国土交通省都市局)

図-2 3D都市モデルの導入ガイダンス(国土交通省都市局)


3D都市モデルの導入ガイダンス(国土交通省都市局)

図-3 3D都市モデルの導入ガイダンス(国土交通省都市局)



 
また、CityGML形式によって作成される3D都市モデルは、建物などの地物の表現に関して、LOD(Level of Detail)と呼ばれる概念を定義している。
LODとは、モデルの「詳細さの度合い(詳細度)」であり、一つのオブジェクトの幾何をその利用や可視化の目的に応じて、複数の段階に抽象化することを可能とする、マルチスケールなモデリングの仕組みである。
例えばLOD1は、建物図形に高さを与えた単純なモデルであり、低コストで都市スケールの3D都市モデルを整備するのに適している。
他方、LOD4は建物の屋内や付属物を含めたモデルであり、建物内外を含めた高精度のシミュレーションに利用可能である。
 
この仕組みにより、3D都市モデルは同じ地物に関する詳細度の異なるさまざまな情報を統合的に管理・蓄積・利用することが可能である。
例えば、投影縮尺に応じた適切な詳細度での可視化やユースケースに応じた最適なモデルの適用が可能となるなど、多様なアプリケーションで柔軟な利用が可能となる(図-4)。

3D都市モデルの導入ガイダンス(国土交通省都市局)

図-4 3D都市モデルの導入ガイダンス(国土交通省都市局)



 

(3)ユースケース開発

Project PLATEAUでは、多様な領域での活用ポテンシャルを実証するため、各種実証実験やフィージビリティスタディ(実証可能性調査)を実施している。
うち建設関係のユースケースとしては、BIMモデルとの連携がある。
bSI(buildingSMART International)が策定した三次元モデルデータ形式である「IFC」を介して「CityGML」に再変換を試み、そこで得られた知見を令和3年3月末に「3D都市モデル整備のためのBIM活用マニュアル」として公表している。
同マニュアルにおいては、建築情報が財産的な価値を有することがあることなどについて例示するとともに、特に機密情報や安全性に関わる可能性のある情報の取り扱いなどについては利用権限について当事者間の合意が必要であることについて記載している。
 
現在、具体のユースケースとして2つ紹介する。
一つ目は屋内外をシームレスにつなぐ避難訓練シミュレーションである。
東京都港区虎ノ門ヒルズのBIMデータを用いて作成した細密な屋内モデルと3D都市モデルをシームレスにつなぐバーチャル空間を構築。
建物内から建物外への避難の動きを再現・検証できる避難シミュレーションツールと徒歩出退社訓練を支援するツールを開発した。
これにより、屋内外をシームレスにつなぐシミュレーションを可能とし、ビル管理者やワーカー向けの訓練や安全な避難経路の検証に活用することができた。
 
二つ目はエリアマネジメントのデジタルツイン化である。
東京ポートシティ竹芝のBIMデータをベースとしたLOD4の3D都市モデルを作成し、周辺エリアの3D都市モデルと統合した『バーチャル竹芝』を構築した。
システム上ではエリア来訪者向けのルート案内表示サービスや、ビル管理者向けの混雑状況監視・要注意者検知・警備員オペレーション支援などのファシリティマネジメントサービスを提供し、3D都市モデルと設置された多数のセンサーから取得されるデータを用いてビル管理の業務効率化やエリア来訪者の利便性向上を検証するなどの取り組みを行った。
それぞれの取り組みについては、同マニュアルにおいて、目的に応じて異なるデータ形式間で引き継いで活用した具体のデータタイプや、データの取り扱いに関する合意などの概要についても紹介している(図-5、6)。

屋内外をシームレスにつなぐ避難訓練シミュレーション

図-5 屋内外をシームレスにつなぐ避難訓練シミュレーション


エリアマネジメントのデジタルツイン化

図-6 エリアマネジメントのデジタルツイン化


(4)ムーブメントの惹起

PLATEAUでは、官民の幅広いプレーヤーや技術ホルダに関心を持っていただき、3D都市モデルの整備・活用のムーブメントを全国へと広げていくため、プロジェクトに関する情報発信に力を入れている。
 
情報発信の一環として、ウェブサイトの開設や、各種イベント開催などを行っている。
また、ウェブサイトでは、ユースケースの紹介記事の配信、コンセプトムービー・ユースケースムービーの公開、有識者インタビュー記事の掲載など豊富なコンテンツを発信している(図-7)。

Project PLATEAUウェブサイト

図-7 Project PLATEAUウェブサイト



 
3D都市モデルのビューアとして、「PLATEAU VIEW」を開発・公開している。
PLATEAU VIEWは、3D都市モデルをインターネットブラウザ上で閲覧可能とするシステムであり、専門的な開発環境がなくてもPLATEAUの成果を体感することができる。
また、属性情報やユースケース(人流・環境など)のデータを重畳して表示する機能や、BIMモデルの可視化機能も搭載している(図-8)。

PLATEAU VIEW

図-8 PLATEAU VIEW



 

おわりに-今後の展開

PLATEAUの取り組みはまだ始まって間もない黎明期にあり、今後は、全国の地方公共団体等と連携し、整備・更新の動きを活性化していく必要がある。
 
このため、2020年度の取り組みの成果を取りまとめる形で、地方公共団体の職員向けの「3D都市モデルの導入ガイダンス」や、民間企業、研究機関、エンジニア向けの技術資料など、10編の「3D都市モデル導入のためのガイドブック」をウェブサイト上で公開している(https://www.mlit.go.jp/plateau/libraries/)。
 
今後も、国土交通省都市局では、ウェブサイトやSNSなどを通じてPLATEAUの成果を紹介するとともに、さらなる取り組みの深化を図っていく。
そのメインスコープは、3D都市モデルの整備・更新・活用のエコシステムの構築である。
3D都市モデルを全国に展開し、スマートシティをはじめとするまちづくりのDX基盤としての役割を果たしていくため、BIMモデルから必要なデータを統合しての活用も柱の一つとしつつ、3D都市モデルの整備都市の拡大、簡易・効率的な整備・更新手法の開発、自動運転やロボット運送などのユースケース開発の深化、街路空間や街路樹・標識など緻密なスケールの地物のデータ仕様定義などに取り組んでいく。

 

 

国土交通省 都市局 都市政策課 再構築政策企画係長
菊地 駿志

 
 
【出典】


建設ITガイド 2022
特集1 建設DX、BIM/CIM
建設ITガイド_2022年


 
 



前の10件
 

新製品ニュース

ライブストリーミング サービス 「RICOH Remote Field」ライブストリーミング サービス 「RICOH Remote Field」


建設ITガイド 電子書籍 2022版
建設ITガイド2022のご購入はこちら

サイト内検索

掲載メーカー様ログインページ


おすすめ新着記事

 



  掲載をご希望の方へ


  土木・建築資材・工法カタログ請求サイト

  けんせつPlaza

  積算資料ポケット版WEB

  BookけんせつPlaza

  建設マネジメント技術

  一般財団法人 経済調査会